skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Density‐Dependent Impact Resilience and Auxeticity of Elastomeric Polyurea Foams
This research investigates the dynamic response of a novel polyurea foam with different densities by separately submitting samples to single and multiple impacts at different energies ranging from 1.77 to 7.09 J. The impact and transmitted force‐time histories are acquired during the impact events. Deformation of the samples is also recorded using high‐speed photography and analyzed using digital image correlation (DIC) to characterize density‐dependent strain rate and Poisson's ratio. The analyses of the force‐time histories highlight the interrelationship between the incoming impact energy and force characteristics, including amplitude and durations. The experimental results reveal that polyurea foams can absorb nearly 50% of the incoming impact energy irrespective of their density. The dynamic impact efficacy of the foam persists even after sequential impact events are imparted on the same samples, with only a 20% drop in the load‐bearing capacity after seven consecutive impacts. Furthermore, as verified via electron microscopy observations, the higher‐density foam does not exhibit any permanent damage. This high‐density polyurea foam shows reversible auxetic transition at all impact energies considered herein. The outcomes of this research indicate the suitability of polyurea foams for cushioning and impact mitigation applications, especially in repeated biomechanical impact scenarios.  more » « less
Award ID(s):
2035663 2035660
PAR ID:
10370788
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
25
Issue:
1
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Density‐graded elastomeric foams are emerging as effective protective structures to guard humans against mechanical loading. This research investigates the deformation of ungraded and graded foams under quasistatic and impact scenarios using digital image correlation (DIC). The graded samples are assembled using two interfacing strategies (seamless and adhered), leveraging the adhesiveness of the foam slurry and bulk polyurea, respectively. Deformation mechanisms, including the effect of the interface type on strain transduction and localization in density‐graded structures, are imperative for improving the impact efficacy of protective paddings. Cuboid foam plugs are subjected to quasistatic and impact loading while recording the corresponding deformation for DIC analysis. The DIC results are separated into three case studies based on the number of layers (1, 2, and 3). The interface effect on the overall mechanical performance of polyurea foam is revealed from the bilayer, monodensity samples, showing drastic differences between the deformations within each layer. Seamless interface samples exhibit greater compliance than their adhered counterparts in the bilayer density‐graded configurations. Trilayer‐graded foams broaden strain–time history, extend the impact duration, and reduce strains. This research substantiates the importance of interfacing and gradation strategies on the mechanical response of elastomeric foams as a function of strain rate. 
    more » « less
  2. null (Ed.)
    This paper reports the unique microstructure of polyurea foams that combines the advantages of open and closed cell polymeric foams, which were synthesized through a self-foaming process. The latter was the result of aggressive mechanical mixing of diamine curative, isocyanate, and deionized water at ambient conditions, which can be adjusted on-demand to produce variable density polyurea foam. The spherical, semi-closed microcellular structure has large perforations on the cell surface resulting from the concurrent expansion of neighboring cells and small holes at the bottom surface of the cells. This resulted in a partially perforated microcellular structure of polyurea foam. As a byproduct of the manufacturing process, polyurea microspheres nucleate and deposit on the inner cell walls of the foam, acting as a reinforcement. Since cell walls and the microspheres are made of polyurea, the resulting reinforcement effect overcomes the fundamental interfacial issue of different adjacent materials. The partially perforated, self-reinforced polyurea foam is compared to the performance of traditional counterparts in biomechanical impact scenarios. An analytical model was developed to explicate the stiffening effect associated with the reinforcing microspheres. The model results indicate that the reinforced microcell exhibited, on average, ~30% higher stiffness than its barren counterpart. 
    more » « less
  3. Midsoles are important components in footwear as they provide shock absorption and stability, thereby improving comfort and effectively preventing certain foot injuries. A strategically engineered midsole designed to mitigate plantar pressure can enhance athletic performance and comfort levels. Despite the importance of midsole design, the potential of using in-plane density gradation (deliberate variation of material density across the horizontal plane) in midsoles has been rarely explored. The present work investigated the effectiveness of in-plane density gradation in shoe midsoles using novel polyurea foams as the material candidate. Different polyurea foam densities, ranging from 95 to 350 kg/m2were examined and tested to construct density-dependent correlative mathematical relations required for optimizing the midsole design for enhanced cushioning and reduced weight. This study combined mechanical testing and plantar pressure measurements to validate the efficacy of density-graded midsoles. The methodology introduced here is relevant to realistic walking conditions, ensured by biomechanical tests supplemented by digital image correlation analyses. An optimization framework was then created to allocate foam densities at certain plantar zones based on the required cushioning performance constrained by the local pressure. The optimization algorithm was specifically tailored to accommodate varying local pressures experienced by different areas of the foot. The optimization strategy in this study aimed at reducing the overall weight of the midsole while ensuring there were no compromises in cushioning efficacy or distribution of plantar pressure. The approach presented herein has the potential to be applied to a wide range of gait speeds and user-specific plantar pressure patterns. 
    more » « less
  4. Abstract This article reports the coexistence of hardening and softening phenomena when polyurea is submitted to repeated nano‐impacts with various impact forces while controlling the strain rate. The manifestation of these phenomena is further elucidated by interrogating ultraviolet irradiated samples under ambient and nitrogen atmospheres, wherein artificial weathering accelerates hardening by reducing the nano‐impact depths as a function of exposure duration while increasing the impact load, nano‐impact repetitions and strain rate sensitivity favored softening. A 21% and 48% increase in indentation depth are recorded after 100 repetitions at a relatively higher force (10 mN) at a low strain rate and low force (2.5 mN) at a relatively higher rate for pristine and weathered polyurea, respectively. Electron microscopy evidences the induced, progressive damage at the nanoscale based on the agglomeration of hard segments, reduced free volume, and weathering‐induced surface embrittlement. 
    more » « less
  5. Sodium naphthenates (NaNs), found in crude oils and oil sands process-affected water (OSPW), can act as surfactants and stabilize undesirable foams and emulsions. Despite the critical impact of soap-like NaNs on the formation, properties, and stability of petroleum and OSPW foams, there is a significant lack of studies that characterize foam film drainage, motivating this study. Here, we contrast the drainage of aqueous foam films formulated with NaN with foams containing sodium dodecyl sulfate (SDS), a well-studied surfactant system, in the relatively low concentration regime ( c /CMC < 12.5). The foam films exhibit drainage via stratification, displaying step-wise thinning and coexisting thick–thin regions manifested as distinct shades of gray in reflected light microscopy due to thickness-dependent interference intensity. Using IDIOM (interferometry digital imaging optical microscopy) protocols that we developed, we analyze pixel-wise intensity to obtain thickness maps with high spatiotemporal resolution (thickness <1 nm, lateral ∼500 nm, time ∼10 ms). The analysis of interference intensity variations over time reveals that the aqueous foam films of both SDS and NaN possess an evolving, dynamic, and rich nanoscopic topography. The nanoscopic thickness transitions for stratifying SDS foam films are attributed to the role played by damped supramolecular oscillatory structural disjoining pressure contributed by the confinement-induced layering of spherical micelles. In comparison with SDS, we find smaller concentration-dependent step size and terminal film thickness values for NaN, implying weaker intermicellar interactions and oscillatory structural disjoining pressure with shorter decay length and periodicity. 
    more » « less