skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A State‐of‐the‐Art Review of Optimal Reservoir Control for Managing Conflicting Demands in a Changing World
Abstract The state of the art for optimal water reservoir operations is rapidly evolving, driven by emerging societal challenges. Changing values for balancing environmental resources, multisectoral human system pressures, and more frequent climate extremes are increasing the complexity of operational decision making. Today, reservoir operations benefit from technological advances, including improved monitoring and forecasting systems as well as increasing computational power. Past research in this area has largely focused on improving solution algorithms within the limits of the available computational power, using simplified problem formulations that can misrepresent important systemic complexities and intersectoral interactions. In this study, we review the recent literature focusing on how the operation design problem is formulated, rather than solved, to address existing challenges and take advantage of new opportunities. This paper contributes a comprehensive classification of over 300 studies published over the last years into distinctive categories depending on the adopted problem formulation, which clarifies consolidated methodological approaches and emerging trends. Our analysis also suggests that control policy design methods may benefit from broadening the types of information that is used to condition operational decisions, and from using emulation modeling to identify low‐order, computationally efficient surrogate models capturing realistic representations of river basin systems' complexity in order to isolate key decision‐relevant processes. These advances in reservoir operations hold significant promise for better addressing the challenges of conflicting human pressures and a changing world, which is particularly important, given the renewed interest in dam construction globally.  more » « less
Award ID(s):
1639268
PAR ID:
10370872
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
12
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ensuring the frequency stability of electric grids with increasing renewable resources is a key problem in power system operations. In recent years, a number of advanced controllers have been designed to optimize frequency control. These controllers, however, almost always assume that the net load in the system remains constant over a sufficiently long time. Given the intermittent and uncertain nature of renewable resources, it is becoming important to explicitly consider net load that is time-varying. This paper proposes an adaptive approach to frequency control in power systems with significant time-varying net load. We leverage the advances in short-term load forecasting, where the net load in the system can be accurately predicted using weather and other features. We integrate these predictions into the design of adaptive controllers, which can be seamlessly combined with most existing controllers including conventional droop control and emerging neural network-based controllers. We prove that the overall control architecture achieves frequency restoration decentralizedly. Case studies verify that the proposed method improves both transient and frequency-restoration performances compared to existing approaches. 
    more » « less
  2. Learning is traditionally studied in biological or computational systems. The power of learning frameworks in solving hard inverse problems provides an appealing case for the development of physical learning in which physical systems adopt desirable properties on their own without computational design. It was recently realized that large classes of physical systems can physically learn through local learning rules, autonomously adapting their parameters in response to observed examples of use. We review recent work in the emerging field of physical learning, describing theoretical and experimental advances in areas ranging from molecular self-assembly to flow networks and mechanical materials. Physical learning machines provide multiple practical advantages over computer designed ones, in particular by not requiring an accurate model of the system, and their ability to autonomously adapt to changing needs over time. As theoretical constructs, physical learning machines afford a novel perspective on how physical constraints modify abstract learning theory. 
    more » « less
  3. Computational metacognition represents a cognitive systems perspective on high-order reasoning in integrated artificial systems that seeks to leverage ideas from human metacognition and from metareasoning approaches in artificial intelligence. The key characteristic is to declaratively represent and then monitor traces of cognitive activity in an intelligent system in order to manage the performance of cognition itself. Improvements in cognition then lead to improvements in behavior and thus performance. We illustrate these concepts with an agent implementation in a cognitive architecture called MIDCA and show the value of metacognition in problem-solving. The results illustrate how computational metacognition improves performance by changing cognition through meta-level goal operations and learning. 
    more » « less
  4. Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presents a dynamic simulation platform, called Transit-Gym, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city. 
    more » « less
  5. null (Ed.)
    Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presents a dynamic simulation platform, called Transit-Gym, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city. 
    more » « less