skip to main content


Title: Idealized Simulations of the Tropical Climate and Variability in the Single Column Atmosphere Model (SCAM): Radiative‐Convective Equilibrium
Abstract

To explore the interactions among column processes in the Community Atmosphere Model (CAM), the single‐column version of CAM (SCAM) is integrated for 1000 days in radiative‐convective equilibrium (RCE) with tropical values of boundary conditions, spanning a parameter or configuration space of model physics versions (v5 vs. v6), vertical resolution (standard and 60 levels), sea surface temperature (SST), and some interpretation‐driven experiments. The simulated time‐mean climate is reasonable, near observations and RCE of a cyclic cloud‐resolving model. Updraft detrainment in the deep convection scheme produces distinctive grid‐scale structures in humidity and cloud, which also interact with radiative transfer processes. These grid artifacts average out in multi‐column RCE results reported elsewhere, illustrating the nuts‐and‐bolts interpretability that SCAM adds to the hierarchy of model configurations. Multi‐day oscillations of precipitation arise from descent of warm convection‐capping layers starting near the tropopause, eventually reset by a burst of convective deepening. Experiments reveal how these oscillations depend critically on an internal parameter that controls the number of neutral buoyancy levels allowed for determining cloud top and computing dilute convective available potential energy in the deep convection scheme, and merely modified a little by disabling cloud‐base radiation (heating of cloud base). This strong dependence of transient behavior in 1D on this parameter will be tested in the second part of this work, in which SCAM is coupled to a parameterized dynamics of two‐dimensional, linearized gravity wave, and in the 3D simulations in future study.

 
more » « less
Award ID(s):
1839741 1830729
NSF-PAR ID:
10370887
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
14
Issue:
2
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A two‐column radiative–convective equilibrium (RCE) model is used to study the depth of convection that develops in the subsiding branch of a Walker‐like overturning circulation. The model numerically solves for two‐dimensional non‐rotating hydrostatic flow, which is damped by momentum diffusion in the boundary layer and model interior, and by convective momentum transport. Convection, clouds and radiative transfer are parametrized, and the convection scheme does not include explicit freezing or melting.

    While integrating the model towards local RCE, the level of neutral buoyancy (LNB) fluctuates between mid‐ and high levels. Evaporation of detrained moisture at the LNB locally cools the environment, so that the final RCE state has a stable layer at mid‐levels (550 hPa ≈ 50–100 hPa below 0 °C), which is unrelated to melting of ice. Preferred detrainment at mid‐ and high levels leaves the middle‐to‐upper troposphere relatively dry.

    A circulation is introduced by incrementally lowering the sea‐surface temperature in one column, which collapses convection: first to a congestus mode with tops near 550 hPa, below the dry layer created in RCE; then to congestus with tops near 650 hPa; and finally to shallow cumulus with tops near 850 hPa. Critical to stabilizing congestus near 650 hPa is large radiative cooling near moist cumulus tops under a dry upper atmosphere. This congestus mode is very sensitive, and only develops when horizontal temperature gradients created by evaporative and radiative cooling can persist against the work of gravity waves. This only happens in runs with ample momentum diffusion, which are those with convective momentum transport or large domains.

    Compared to the shallow mode, the congestus mode produces a deep moist layer and more precipitation. This reduces radiative cooling in the cloud layer and enhances stability near the cloud base, which weakens the circulation, and leads to less precipitation over the warm ocean.

     
    more » « less
  2. Abstract

    In a modeled environment of rotating radiative‐convective equilibrium (RCE), convective self‐aggregation may take the form of spontaneous tropical cyclogenesis. We investigate the processes leading to tropical cyclogenesis in idealized simulations with a three‐dimensional cloud‐permitting model configured in rotating RCE, in which the background planetary vorticity is varied acrossf‐plane cases to represent a range of deep tropical and near‐equatorial environments. Convection is initialized randomly in an otherwise homogeneous environment, with no background wind, precursor disturbance, or other synoptic‐scale forcing. We examine the dynamic and thermodynamic evolution of cyclogenesis in these experiments and compare the physical mechanisms to current theories. All simulations with planetary vorticity corresponding to latitudes from 10°–20° generate intense tropical cyclones, with maximum wind speeds of 80 m s−1or above. Time to genesis varies widely, even within a five‐member ensemble of 20° simulations, indicating large stochastic variability. Shared across the 10°–20° group is the emergence of a midlevel vortex in the days leading to genesis, which has dynamic and thermodynamic implications on its environment that facilitate the spin‐up of a low‐level vortex. Tropical cyclogenesis is possible in this model at values of Coriolis parameter as low as that representative of 1°. In these experiments, convection self‐aggregates into a quasicircular cluster, which then begins to rotate and gradually strengthen into a tropical storm, aided by strong near‐surface inflow that is already established days prior. Other experiments at these lower Coriolis parameters instead self‐aggregate into a nonrotating elongated band and fail to undergo cyclogenesis over the 100‐day simulation.

     
    more » « less
  3. Abstract

    Characteristics of, and fundamental differences between, the radiative‐convective equilibrium (RCE) climate states following the Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) protocols in the Community Atmosphere Model version 5 (CAM5) and version 6 (CAM6) are presented. This paper explores the characteristics of clouds, moisture, precipitation and circulation in the RCE state, as well as the tropical response to surface warming, in CAM5 and CAM6 with different parameterizations. Overall, CAM5 simulates higher precipitation rates that result in larger global average precipitation, despite lower outgoing longwave radiation compared to CAM6. Differences in the structure of clouds, particularly the amount and vertical location of cloud liquid, exist between the CAM versions and can, in part, be related to distinct representations of shallow convection and boundary layer processes. Both CAM5 and CAM6 simulate similar peaks in cloud fraction, relative humidity, and cloud ice, linked to the usage of a similar deep convection parameterization. These anvil clouds rise and decrease in extent in response to surface warming. More generally, extreme precipitation, aggregation of convection, and climate sensitivity increase with warming in both CAM5 and CAM6. This analysis provides a benchmark for future studies that explore clouds, convection, and climate in CAM with the RCEMIP protocols now available in the Community Earth System Model. These results are discussed within the context of realistic climate simulations using CAM5 and CAM6, highlighting the usefulness of a hierarchical modeling approach to understanding model and parameterization sensitivities to inform model development efforts.

     
    more » « less
  4. Abstract

    The Single Column Atmosphere Model (SCAM) is a single column model version of the Community Atmosphere Model (CAM). Here we describe the functionality and features of SCAM6, available as part of CAM6 in the Community Earth System Model, version 2 (CESM2). SCAM6 features a wide selection of standard cases, as well as the ability to easily configure a case specified by the user based on a particular point in a CAM 3‐D simulation. This work illustrates how SCAM6 reproduces CAM6 results for physical parameterizations, mostly of moisture and clouds. We demonstrate how SCAM6 can be used for model development through different physics selections, as well as with parameter sweep experiments to highlight the sensitivity of cloud properties to the specification of the vapor deposition process in the cloud microphysics. Furthermore, we use SCAM6 to illustrate the sensitivity of CAM6 cloud radiative properties and precipitation to variable drop number (cloud microphysics properties). Finally, we illustrate how SCAM6 can be used to explore critical emergent processes such as cloud feedbacks and show that CAM6 cloud responses to surface warming in stratus and stratocumulus regimes are similar to those in CAM5. CAM6 has a larger response in the shallow cumulus regime than CAM5. CAM6 cloud feedbacks in the shallow cumulus regime are sensitive to turbulence parameters. SCAM6 is thus a valuable tool for model development, evaluation, and scientific analy sis and an important part of the model hierarchy in Community Earth System Model, version 2.

     
    more » « less
  5. Abstract

    Radiative‐convective equilibrium (RCE) is particularly well suited for studying tropical deep‐convection, a regime of clouds that contributes some of the highest uncertainties to the estimates of total cloud feedback. In order to perform a comprehensive calculation and decomposition of cloud feedbacks in cloud‐permitting models, previously primarily done in global climate models, the configuration of a satellite simulator for use with offline data was successfully implemented. The resultant total cloud feedback is slightly positive, primarily driven by the longwave effects of increases in cloud altitude. The high‐cloud altitude feedback is robustly positive and has a central value and uncertainty well‐matched with prior estimates. Reductions in high cloud amount drive a tropical anvil cloud area feedback that is on average negative, consistent with prior estimates. However, a subset of models with finer horizontal grid spacing indicate that a positive tropical anvil cloud area feedback cannot be ruled out. Even though RCE is only applicable to tropical deep‐convective clouds, the RCE total cloud feedback is within the range of prior comprehensive estimates of the global total cloud feedback. This emphasizes that the tropics heavily influence the behavior of global cloud feedbacks and that RCE can be exploited to learn more about how processes related to deep convection control cloud feedbacks.

     
    more » « less