This content will become publicly available on May 1, 2023
- Award ID(s):
- 1915093
- Publication Date:
- NSF-PAR ID:
- 10371162
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 5
- ISSN:
- 1029-8479
- Sponsoring Org:
- National Science Foundation
More Like this
-
We report the first measurement of coherent elastic neutrino-nucleus scattering (CEvNS) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer CEvNS over the background-only null hypothesis with greater than 3σ significance. The measured cross section, averaged over the incident neutrino flux, is (2.2±0.7)×10−39 cm2—consistent with the standard model prediction. The neutron-number dependence of this result, together with that from our previous measurement on CsI, confirms the existence of the CEvNS process and provides improved constraints on nonstandard neutrino interactions.
-
Abstract We present the analysis and results of the first datasetcollected with the MARS neutron detectordeployed at the Oak Ridge NationalLaboratory Spallation Neutron Source (SNS) for the purpose ofmonitoring and characterizing the beam-related neutron (BRN) backgroundfor the COHERENT collaboration. MARS was positionednext to the COH-CsI coherent elastic neutrino-nucleus scattering detectorin the SNS basement corridor. This is the basement location ofclosest proximity to the SNS target and thus, of highest neutrino flux,but it is also well shielded from the BRN flux by infill concreteand gravel. These data show the detector registered roughly one BRN per day.Using MARS' measured detection efficiency, the incomingBRN flux is estimated to be 1.20 ± 0.56 neutrons/m^2/MWhfor neutron energies above ∼3.5 MeV and up to a few tens of MeV.We compare our results with previous BRN measurements in the SNS basement corridorreported by other neutron detectors.
-
Abstract The future
Ricochet experiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, theRicochet Collaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present theRicochet neutron background characterization using He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to the$$^3$$ Ricochet Geant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the futureRicochet experiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness ofmore » -
Coherent elastic neutrino-nucleus scattering (CEνNS) offers a valuable approach in searching for physics beyond the Standard Model. The Ricochet experiment aims to perform a precision measurement of the CEνNS spectrum at the Institut Laue-Langevin nuclear reactor with cryogenic solid-state detectors. The experiment will employ an array of cryogenic thermal detectors, each with a mass of around 30 g and an energy threshold of 50 eV. One section of this array will contain 9 Transition Edge Sensor (TES)-based calorimeters. The design will not only fulfill requirements for Ricochet, but also act as a demonstrator for future neutrino experiments that will require thousands of macroscopic detectors. In this article, we present an updated TES chip design, as well as performance predictions based on a numerical modeling.
-
A global analysis strategy to resolve neutrino NSI degeneracies with scattering and oscillation dataA bstract Neutrino non-standard interactions (NSI) with the first generation of standard model fermions can span a parameter space of large dimension and exhibit degeneracies that cannot be broken by a single class of experiment. Oscillation experiments, together with neutrino scattering experiments, can merge their observations into a highly informational dataset to combat this problem. We consider combining neutrino-electron and neutrino-nucleus scattering data from the Borexino and COHERENT experiments, including a projection for the upcoming coherent neutrino scattering measurement at the CENNS-10 liquid argon detector. We extend the reach of these data sets over the NSI parameter space with projections for neutrino scattering at a future multi-ton scale dark matter detector and future oscillation measurements from atmospheric neutrinos at the Deep Underground Neutrino Experiment (DUNE). In order to perform this global anal- ysis, we adopt a novel approach using the copula method, utilized to combine posterior information from different experiments with a large, generalized set of NSI parameters. We find that the contributions from DUNE and a dark matter detector to the Borexino and COHERENT fits can improve constraints on the electron and quark NSI parameters by up to a factor of 2 to 3, even when relatively many NSImore »