skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Ruddlesden–Popper Perovskites with Narrow Phase Distribution for Air‐Stable Solar Cells
  more » « less
Award ID(s):
1719875 2054942 2114350
NSF-PAR ID:
10371177
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Solar RRL
Volume:
6
Issue:
9
ISSN:
2367-198X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    Quasi‐2D hybrid halide perovskites have drawn considerable attention due to their improved stability and facile tunability compared to 3D perovskites. The expansiveness of possibilities has thus far been limited by the difficulty in incorporating large ligands into thin‐film devices. Here, a bulky bi‐thiophene 2T ligand is focused on to develop a solvent system around creating strongly vertically‐aligned (2T)2(MA)6Pb7I22(n = 7) quasi‐2D perovskite films. By starting with a poorly coordinating solvent (gamma‐butyrolactone) and adding a small amount of dimethylsulfoxide and methanol, it is found that vertical orientation andz‐uniformity is greatly improved. These are carefully examined and verified using grazing‐incidence wide‐angle X‐ray scattering analysis and advanced optical characterizations. These films are incorporated into champion solar cells that achieve a power conversion efficiency of 13.3%, with a short‐circuit current density of 18.9 mA cm‐2, an open‐circuit voltage of 0.96 V, and a fill factor of 73.8%. Furthermore, the quasi‐2D absorbing layers show excellent stability in moisture, remaining unchanged after hundreds of hours. In addition, 2T is compared with the more common ligands butylammonium and phenylethylammonium in this solvent system to develop heuristics and deeper understanding of how to incorporate large ligands into stable photovoltaic devices.

     
    more » « less
  3. Abstract

    The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−xSrxHfO3system. The resulting (240)‐oriented PbHfO3(Pba2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP4mmphase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−xSrxHfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (EB) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (Ur) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofEB = 5.12 ± 0.5 MV cm−1,Ur = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides.

     
    more » « less
  4. Abstract

    Recently, the stability of organic–inorganic perovskite thin films under thermal, photo, and moisture stresses has become a major concern for further commercialization due to the high volatility of the organic cations in the prototype perovskite composition (CH3NH3PbI3). All inorganic cesium (Cs) based perovskite is an alternative to avoid the release or decomposition of organic cations. Moreover, substituting Pb with Sn in the organic–inorganic lead halide perovskites has been demonstrated to narrow the bandgap to 1.2–1.4 eV for high‐performance perovskite solar cells. In this work, a series of CsPb1−xSnxIBr2perovskite alloys via one‐step antisolvent method is demonstrated. These perovskite films present tunable bandgaps from 2.04 to 1.64 eV. Consequently, the CsPb0.75Sn0.25IBr2with homogeneous and densely crystallized morphology shows a remarkable power conversion efficiency of 11.53% and a highVocof 1.21 V with a much improved phase stability and illumination stability. This work provides a possibility for designing and synthesizing novel inorganic halide perovskites as the next generation of photovoltaic materials.

     
    more » « less
  5.  
    more » « less