Abstract The performance of large‐area perovskite solar cells (PSCs) has been assessed for typical compositions, such as methylammonium lead iodide (MAPbI3), using a blade coater, slot‐die coater, solution shearing, ink‐jet printing, and thermal evaporation. However, the fabrication of large‐area all‐inorganic perovskite films is not well developed. This study develops, for the first time, an eco‐friendly solvent engineered all‐inorganic perovskite ink of dimethyl sulfoxide (DMSO) as a main solvent with the addition of acetonitrile (ACN), 2‐methoxyethanol (2‐ME), or a mixture of ACN and 2‐ME to fabricate large‐area CsPbI2.77Br0.23films with slot‐die coater at low temperatures (40–50 °C). The perovskite phase, morphology, defect density, and optoelectrical properties of prepared with different solvent ratios are thoroughly examined and they are correlated with their respective colloidal size distribution and solar cell performance. The optimized slot‐die‐coated CsPbI2.77Br0.23perovskite film, which is prepared from the eco‐friendly binary solvents dimethyl sulfoxide:acetonitrile (0.8:0.2 v/v), demonstrates an impressive power conversion efficiency (PCE) of 19.05%. Moreover, the device maintains ≈91% of its original PCE after 1 month at 20% relative humidity in the dark. It is believed that this study will accelerate the reliable manufacturing of perovskite devices. 
                        more » 
                        « less   
                    This content will become publicly available on August 1, 2026
                            
                            Engineering Inorganic Perovskite Films by X Values of DMAPbI x toward Large Area Photovoltaic Devices by Slot‐Die Coating
                        
                    
    
            Abstract Dimethylammonium lead iodide (DMAPbIx) has the potential to address the phase stability issue of inorganic perovskite solar cells (PSCs). In this study, the crystallinity, phase structure, defect states, and crystal growth habits of DMAPbIxare controlled by adjusting thexvalue during synthesis, where N,N‐dimethylacetamide (DMAC) is used as the solvent to regulate perovskite film growth. Furthermore, large‐area CsPbI2.85Br0.15perovskite films with preferred oriented growth are achieved using the optimizedxvalue in DMAPbIxthrough the slot‐die coating method. The inorganic PSCs, with a n‐i‐p structure and the active area of 0.04 cm2, achieve a champion power conversion efficiency (PCE) of 19.82%, with an open‐circuit voltage (Voc) of 1.16 V based on perovskite films formed by slot‐die coating. This work provides important insights into the DMAPbIx‐based method for fabricating high‐quality inorganic perovskite films, and paves the way for large‐area inorganic PSCs fabrication for practical applications. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10640855
- Publisher / Repository:
- Wiley -VCH
- Date Published:
- Journal Name:
- Small
- Volume:
- 21
- Issue:
- 33
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Perovskite solar cells (PSCs) have attracted significant research efforts due to their remarkable performance. However, most perovskite films are prepared by the antisolvent method which is not suitable for practical applications. Herein, a (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3(CsFAMA) perovskite film fabrication technique is developed using solvent volatilization without any antisolvents. The films are formed through recrystallization via the intermediate phase CsMAFAPbIxClyBrzduring annealing, leading to high‐quality perovskite films. The perovskite growth mechanism is investigated in terms of controlling the amount of formamidinium iodide and methylammonium chloride in the precursor solutions. The oriental growth of the films via the intermediate phase is confirmed by the grazing‐incidence wide‐angle X‐ray scattering measurements. The photovoltaic properties of the perovskite films are investigated. The PSCs based on the films fabricated using the method exhibit a high efficiency of 20.6%. The method developed in this work is based on solvent volatilization, which exhibits significant potential in high reproducibility, facile operation, and large‐scale production.more » « less
- 
            Abstract Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories.more » « less
- 
            Perovskite photovoltaic technology carries immense opportunity for the solar industries because of its remarkable efficiency and prospect for cost-effective production. However, the successful deployment of perovskite solar modules (PSMs) in the solar market necessitates tackling stability-based obstacles, scalability, and environmental considerations. This paper unveils a comprehensive examination of the cutting-edge advancements in the manufacturing of perovskite solar cells (PSCs) and modules, with an emphasis on high-speed, large-area printing. The paper underscores the substantial progress achieved in printed PSCs and PSMs, demonstrating promising electrical performance and long-term device durability. This review paper categorizes printing techniques compatible with large-area high-speed manufacturing into three distinct families: blade coating, slot die coating, and screen printing, as these common printing practices offer precise control, scalability, cost-effectiveness, high resolution, and efficient material usage. Additionally, this paper presents an in-depth investigation and comparison of superior PSCs and PSMs fabricated by printing on power conversion efficiency (PCE), stability, and scalability.more » « less
- 
            Abstract This study employs a data‐driven machine learning approach to investigate specific ferroelectric properties of Al1−xScxN thin films, targeting their application in next‐generation nonvolatile memory (NVM) devices. This approach analyzes a vast design space, encompassing over a million data points, to predict a wide range of coercive field values that are crucial for optimizing Al1−xScxN‐based NVM devices. We evaluated seven machine learning models to predict the coercive field across a range of conditions, identifying the random forest algorithm as the most accurate, with a testR2value of 0.88. The model utilized five key features: film thickness, measurement frequency, operating temperature, scandium concentration, and growth temperature to predict the design space. Our analysis spans 13 distinct scandium concentrations and 13 growth temperatures, encompassing thicknesses from 9–1000 nm, frequencies from 1 to 100 kHz, and operating temperatures from 273 to 700 K. The predictions revealed dominant coercive field values between 3.0 and 4.5 MV/cm, offering valuable insights for the precise engineering of Al1−xScxN‐based NVM devices. This work underscores the potential of machine learning in guiding the development of advanced ferroelectric materials with tailored properties for enhanced device performance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
