Abstract We introduce partitioned matching games as a suitable model for international kidney exchange programmes, where in each round the total number of available kidney transplants needs to be distributed amongst the participating countries in a “fair” way. A partitioned matching game (N, v) is defined on a graph$$G=(V,E)$$ with an edge weightingwand a partition$$V=V_1 \cup \dots \cup V_n$$ . The player set is$$N = \{ 1, \dots , n\}$$ , and player$$p \in N$$ owns the vertices in$$V_p$$ . The valuev(S) of a coalition $$S \subseteq N$$ is the maximum weight of a matching in the subgraph ofGinduced by the vertices owned by the players in S. If$$|V_p|=1$$ for all$$p\in N$$ , then we obtain the classical matching game. Let$$c=\max \{|V_p| \; |\; 1\le p\le n\}$$ be the width of (N, v). We prove that checking core non-emptiness is polynomial-time solvable if$$c\le 2$$ but co--hard if$$c\le 3$$ . We do this via pinpointing a relationship with the known class ofb-matching games and completing the complexity classification on testing core non-emptiness forb-matching games. With respect to our application, we prove a number of complexity results on choosing, out of possibly many optimal solutions, one that leads to a kidney transplant distribution that is as close as possible to some prescribed fair distribution.
more »
« less
BPS Algebras in 2D String Theory
Abstract We discuss a set of heterotic and type II string theory compactifications to$$1+1$$ dimensions that are characterized by factorized internal worldsheet CFTs of the form$$V_1\otimes \bar{V}_2$$ , where$$V_1, V_2$$ are self-dual (super) vertex operator algebras. In the cases with spacetime supersymmetry, we show that the BPS states form a module for a Borcherds–Kac–Moody (BKM) (super)algebra, and we prove that for each model the BKM (super)algebra is a symmetry of genus zero BPS string amplitudes. We compute the supersymmetric indices of these models using both Hamiltonian and path integral formalisms. The path integrals are manifestly automorphic forms closely related to the Borcherds–Weyl–Kac denominator. Along the way, we comment on various subtleties inherent to these low-dimensional string compactifications.
more »
« less
- Award ID(s):
- 1911298
- PAR ID:
- 10371415
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Annales Henri Poincaré
- Volume:
- 23
- Issue:
- 10
- ISSN:
- 1424-0637
- Page Range / eLocation ID:
- p. 3667-3752
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$ →h), Γ(h→$$ \mathcal{GG} $$ ), Γ(h→$$ \mathcal{AA} $$ ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h→$$ \overline{\Psi}\Psi $$ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ , where$$ {\overline{v}}_T $$ is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h→$$ \overline{\Psi}\Psi $$ ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects.more » « less
-
Abstract This work investigates how students interpret various eigenequations in different contexts for$$2 \times 2$$ matrices:$$A\vec {x}=\lambda \vec {x}$$ in mathematics and either$$\hat{S}_x| + \rangle _x=\frac{\hbar }{2}| + \rangle _x$$ or$$\hat{S}_z| + \rangle =\frac{\hbar }{2}| + \rangle$$ in quantum mechanics. Data were collected from two sources in a senior-level quantum mechanics course; one is video, transcript and written work of individual, semi-structured interviews; the second is written work from the same course three years later. We found two principal ways in which students reasoned about the equal sign within the mathematics eigenequation and at times within the quantum mechanical eigenequations: with a functional interpretation and/or a relational interpretation. Second, we found three distinct ways in which students explained how they made sense of the physical meaning conveyed by the quantum mechanical eigenequations: via a measurement interpretation, potential measurement interpretation, or correspondence interpretation of the equation. Finally, we present two themes that emerged in the ways that students compared the different eigenequations: attention to form and attention to conceptual (in)compatibility. These findings are discussed in relation to relevant literature, and their instructional implications are also explored.more » « less
-
Abstract For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$ of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$ of two curves over$$\mathbb {Q} $$ with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ is finite, where$$J_i$$ is the Jacobian variety of$$C_i$$ . Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$ with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$ for which the analogous map$$\varepsilon $$ has finite image.more » « less
-
Abstract We show that the affine vertex superalgebra V^{k}(\mathfrak{osp}_{1|2n})at generic level 𝑘 embeds in the equivariant 𝒲-algebra of \mathfrak{sp}_{2n}times 4nfree fermions.This has two corollaries:(1) it provides a new proof that, for generic 𝑘, the coset \operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}),V^{k}(\mathfrak{osp}_{1|2n}))is isomorphic to \mathcal{W}^{\ell}(\mathfrak{sp}_{2n})for \ell=-(n+1)+(k+n+1)/(2k+2n+1), and(2) we obtain the decomposition of ordinary V^{k}(\mathfrak{osp}_{1|2n})-modules into V^{k}(\mathfrak{sp}_{2n})\otimes\mathcal{W}^{\ell}(\mathfrak{sp}_{2n})-modules.Next, if 𝑘 is an admissible level and ℓ is a non-degenerate admissible level for \mathfrak{sp}_{2n}, we show that the simple algebra L_{k}(\mathfrak{osp}_{1|2n})is an extension of the simple subalgebra L_{k}(\mathfrak{sp}_{2n})\otimes{\mathcal{W}}_{\ell}(\mathfrak{sp}_{2n}).Using the theory of vertex superalgebra extensions, we prove that the category of ordinary L_{k}(\mathfrak{osp}_{1|2n})-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects.It is equivalent to a certain subcategory of \mathcal{W}_{\ell}(\mathfrak{sp}_{2n})-modules.A similar result also holds for the category of Ramond twisted modules.Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary L_{k}(\mathfrak{sp}_{2n})-modules are rigid.more » « less
An official website of the United States government
