Abstract Raman scattering is performed on Fe3GeTe2(FGT) at temperatures from 8 to 300 K and under pressures from the ambient pressure to 9.43 GPa. Temperature‐dependent and pressure‐dependent Raman spectra are reported. The results reveal respective anomalous softening and moderate stiffening of the two Raman active modes as a result of the increase of pressure. The anomalous softening suggests anharmonic phonon dynamics and strong spin–phonon coupling. Pressure‐dependent density functional theory and phonon calculations are conducted and used to study the magnetic properties of FGT and assign the observed Raman modes,and. The calculations proved the strong spin–phonon coupling for themode. In addition, a synergistic interplay of pressure‐induced reduction of spin exchange interactions and spin–orbit coupling effect accounts for the softening of themode as pressure increases.
more »
« less
Optical Activity of Spin‐Forbidden Electronic Transitions in Metal Complexes from Time‐Dependent Density Functional Theory with Spin‐Orbit Coupling
Abstract The calculation of magnetic transition dipole moments and rotatory strengths was implemented at the zeroth‐order regular approximation (ZORA) two‐component relativistic time‐dependent density functional theory (TDDFT) level. The circular dichroism of the spin‐forbidden ligand‐field transitions of tris(ethylenediamine)cobalt(III) computed in this way agrees very well with available measurements. Phosphorescence dissymmetry factorsand the corresponding lifetimes are evaluated for three N‐heterocyclic‐carbene‐based iridium complexes, two of which contain helicene moieties, and for two platinahelicenes. The agreement with experimental data is satisfactory. The calculations reproduce the signs and order of magnitude of, and the large variations of phosphorescence lifetimes among the systems. The electron spin contribution to the magnetic transition dipole moment is shown to be important in all of the computations.
more »
« less
- Award ID(s):
- 1855470
- PAR ID:
- 10372297
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemistryOpen
- Volume:
- 11
- Issue:
- 5
- ISSN:
- 2191-1363
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s.more » « less
-
Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive.more » « less
-
Abstract Plasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere‐ionosphere coupling. Recent studies have shown that electron phase space holes can pitch‐angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018,https://doi.org/10.1063/1.5039687). In this study, we have re‐evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraft observations into computing electron diffusion rates and lifetimes. The most important electron hole properties in this evaluation are their distributions in velocity and spatial scale and electric field root‐mean‐square intensity (). Using direct measurements of electron holes during a plasma injection event observed by the Van Allen Probe at, we find that when4 mV/m electron lifetimes can drop below 1 h and are mostly within strong diffusion limits at energies below10 keV. During an injection observed by the THEMIS spacecraft at, electron holes with even typical intensities (1 mV/m) can deplete low‐energy (a few keV) plasma sheet electrons within tens of minutes following injections and convection from the tail. Our results confirm that electron holes are a significant contributor to plasma sheet electron precipitation during injections.more » « less
-
Abstract We present a statistical investigation of the effects of interplanetary magnetic field (IMF) on hemispheric asymmetry in auroral currents. Nearly 6 years of magnetic field measurements from Swarm A and C satellites are analyzed. Bootstrap resampling is used to remove the difference in the number of samples and IMF conditions between the local seasons and the hemispheres. Currents are stronger in Northern Hemisphere (NH) than Southern Hemisphere (SH) for IMF Bin NH (Bin SH) in most local seasons under both signs of IMF B. For Bin NH (Bin SH), the hemispheric difference in currents is small except in local winter when currents in NH are stronger than in SH. During Band Bin NH (Band Bin SH), the largest hemispheric asymmetry occurs in local winter and autumn, when the NH/SH ratio of field aligned current (FAC) is 1.180.09 in winter and 1.170.09 in autumn. During Band Bin NH (Band Bin SH), the largest asymmetry is observed in local autumn with NH/SH ratio of 1.160.07 for FAC. We also find an explicit Beffect on auroral currents in a given hemisphere: on average Bin NH and Bin SH causes larger currents than vice versa. The explicit Beffect on divergence‐free current during IMF Bis in very good agreement with the Beffect on the cross polar cap potential from the Super Dual Auroral Radar Network dynamic model except at SH equinox and NH summer.more » « less
An official website of the United States government
