skip to main content


Title: Coherent Precipitates with Strong Domain Wall Pinning in Alkaline Niobate Ferroelectrics
Abstract

High‐power piezoelectric applications are predicted to share approximately one‐third of the lead‐free piezoelectric ceramic market in 2024 with alkaline niobates as the primary competitor. To suppress self‐heating in high‐power devices due to mechanical loss when driven by large electric fields, piezoelectric hardening to restrict domain wall motion is required. In the present work, highly effective piezoelectric hardening via coherent plate‐like precipitates in a model system of the (Li,Na)NbO3(LNN) solid solution delivers a reduction in losses, quantified as an electromechanical quality factor, by a factor of ten. Various thermal aging schemes are demonstrated to control the average size, number density, and location of the precipitates. The established properties are correlated with a detailed determination of short‐ and long‐range atomic structure by X‐ray diffraction and pair distribution function analysis, respectively, as well as microstructure determined by transmission electron microscopy. The impact of microstructure with precipitates on both small‐ and large‐field properties is also established. These results pave the way to implement precipitate hardening in piezoelectric materials, analogous to precipitate hardening in metals, broadening their use cases in applications.

 
more » « less
Award ID(s):
2110264
NSF-PAR ID:
10372340
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
38
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Even though the fundamental rules governing dislocation activities have been well established in the past century, we report a phenomenon, dislocation transformation, governed by the generalized-stacking-fault energy surface mismatch (GSF mismatch for short) between two co-existing phases. By carrying out ab-initio-informed microscopic phase-field simulations, we demonstrate that the GSF mismatch between a high symmetry matrix phase and a low symmetry precipitate phase can transform an array of identical full dislocations in the matrix into an array of two different types of full dislocations when they shear through the precipitates. The precipitates serve as a passive Shockley partial source, creating new Shockley partial dislocations that are neither the ones from the dissociation of the full dislocation. This phenomenon enriches our fundamental understanding of partial dislocation nucleation and dislocation-precipitate interactions, offering additional opportunities to tailor work-hardening and twinning processes in alloys strengthened by low-symmetry precipitate phases.

     
    more » « less
  2. Abstract

    Protein precipitates that arise during bioprocessing can cause manufacturing challenges, but they can also aid in clearance of host‐cell protein (HCP) and DNA impurities. Such precipitates differ from many protein precipitates that have been studied previously in their heterogeneous composition, particularly in the presence of high concentrations of the product protein. Here, we characterize the precipitates that form after neutralization of protein A purified and viral‐inactivated material of an Fc‐fusion protein produced in Chinese hamster ovary cells. The physical growth of precipitate particles was observed by optical microscopy, transmission electron microscopy, dynamic light scattering, and small‐angle and ultra‐small‐angle X‐ray scattering to characterize the precipitate microstructure and growth mechanism. The precipitate microstructure is well‐described as a mass fractal with fractal dimension approximately 2. The growth is governed by a diffusion‐limited aggregation mechanism as indicated by a power‐law dependence on time of the size of the principal precipitate particles. Optical microscopy shows that these primary particles can further aggregate into larger particles in a manner that appears to be promoted by mixing. Absorbance experiments at varying pH and salt concentrations reveal that the growth is largely driven by attractive electrostatic interactions, as growth is hindered by an increase in ionic strength. The solution conditions that resulted in the most significant particle growth are also correlated with the greatest removal of soluble impurities (DNA and HCPs). Proteomic analysis of the precipitates allows identification ofunique HCP impurities, depending on the buffer species (acetate or citrate) used for the viral inactivation. Most of these proteins have pI values near the precipitation pH, supporting the likely importance of electrostatic interactions in driving precipitate formation.

     
    more » « less
  3. null (Ed.)
    Abstract

    Precipitation strengthening of alloys by the formation of secondary particles (precipitates) in the matrix is one of the techniques used for increasing the mechanical strength of metals. Understanding the precipitation kinetics such as nucleation, growth, and coarsening of these precipitates is critical for evaluating their hardening effects and improving the yield strength of the alloy during heat treatment. To optimize the heat treatment strategy and accelerate alloy design, predicting precipitate hardening effects via numerical methods is a promising complement to trial-and-error-based experiments and the physics-based phase-field method stands out with the significant potential to accurately predict the precipitate morphology and kinetics. In this study, we present a phase-field model that captures the nucleation, growth, and coarsening kinetics of precipitates during isothermal heat treatment conditions. Thermodynamic data, diffusion coefficients, and misfit strain data from experimental or lower length-scale calculations are used as input parameters for the phase-field model. Classical nucleation theory is implemented to capture the nucleation kinetics. As a case study, we apply the model to investigate γ″ precipitation kinetics in Inconel 625. The simulated mean particle length, aspect ratio, and volume fraction evolution are in agreement with experimental data for simulations at 600 °C and 650 °C during isothermal heat treatment. Utilizing the meso-scale results from the phase-field simulations as input parameters to a macro-scale coherency strengthening model, the evolution of the yield strength during heat treatment was predicted. In a broader context, we believe the current study can provide practical guidance for applying the phase-field approach as a link in the multiscale modeling of material properties.

     
    more » « less
  4. Traditionally, precipitates in a material are thought to serve as obstacles to dislocation glide and cause hardening of the material. This conventional wisdom, however, fails to explain recent discoveries of ultrahigh-strength and large-ductility materials with a high density of nanoscale precipitates, as obstacles to dislocation glide often lead to high stress concentration and even microcracks, a cause of progressive strain localization and the origin of the strength–ductility conflict. Here we reveal that nanoprecipitates provide a unique type of sustainable dislocation sources at sufficiently high stress, and that a dense dispersion of nanoprecipitates simultaneously serve as dislocation sources and obstacles, leading to a sustainable and self-hardening deformation mechanism for enhanced ductility and high strength. The condition to achieve sustainable dislocation nucleation from a nanoprecipitate is governed by the lattice mismatch between the precipitate and matrix, with stress comparable to the recently reported high strength in metals with large amount of nanoscale precipitates. It is also shown that the combination of Orowan’s precipitate hardening model and our critical condition for dislocation nucleation at a nanoprecipitate immediately provides a criterion to select precipitate size and spacing in material design. The findings reported here thus may help establish a foundation for strength–ductility optimization through densely dispersed nanoprecipitates in multiple-element alloy systems. 
    more » « less
  5. Abstract

    A face-centered-cubic (fcc) oriented FeCoCrNiAl0.5dual-phase high entropy alloy (HEA) was plastically strained in uniaxial compression at 77K and 293K and the underlying deformation mechanisms were studied. The undeformed microstructure consists of a body-centered-cubic (bcc)/B2 interdendritic network and precipitates embedded in 〈001〉-oriented fcc dendrites. In contrast to other dual-phase HEAs, at both deformation temperatures a steep rise in the stress-strain curves occurs above 23% total axial strain. As a result, the hardening rate associated saturates at the unusual high value of ~6 GPa. Analysis of the strain partitioning between fcc and bcc/B2 by digital image correlation shows that the fcc component carries the larger part of the plastic strain. Further, electron backscatter diffraction and transmission electron microscopy evidence ample fcc deformation twinning both at 77K and 293K, while slip activity only is found in the bcc/B2. These results may guide future advancements in the design of novel alloys with superior toughening characteristics.

     
    more » « less