Abstract Quasi-periodic eruptions (QPEs) are luminous bursts of soft X-rays from the nuclei of galaxies, repeating on timescales of hours to weeks1–5. The mechanism behind these rare systems is uncertain, but most theories involve accretion disks around supermassive black holes (SMBHs) undergoing instabilities6–8or interacting with a stellar object in a close orbit9–11. It has been suggested that this disk could be created when the SMBH disrupts a passing star8,11, implying that many QPEs should be preceded by observable tidal disruption events (TDEs). Two known QPE sources show long-term decays in quiescent luminosity consistent with TDEs4,12and two observed TDEs have exhibited X-ray flares consistent with individual eruptions13,14. TDEs and QPEs also occur preferentially in similar galaxies15. However, no confirmed repeating QPEs have been associated with a spectroscopically confirmed TDE or an optical TDE observed at peak brightness. Here we report the detection of nine X-ray QPEs with a mean recurrence time of approximately 48 h from AT2019qiz, a nearby and extensively studied optically selected TDE16. We detect and model the X-ray, ultraviolet (UV) and optical emission from the accretion disk and show that an orbiting body colliding with this disk provides a plausible explanation for the QPEs.
more »
« less
Dynamical Unification of Tidal Disruption Events
Abstract The ∼100 tidal disruption events (TDEs) observed so far exhibit a wide range of emission properties both at peak and over their lifetimes. Some TDEs radiate predominantly at X-ray energies, while others radiate chiefly at UV and optical wavelengths. While the peak luminosities across TDEs show distinct properties, the evolutionary behavior can also vary between TDEs with similar peak emission properties. In particular, for optical TDEs, while their UV and optical emissions decline somewhat following the fallback pattern, some events can greatly rebrighten in X-rays at late time. In this Letter, we conduct three-dimensional general relativistic radiation magnetohydrodynamics simulations of TDE accretion disks at varying accretion rates in the regime of super-Eddington accretion. We make use of Monte Carlo radiative transfer simulations to calculate the reprocessed spectra at various inclinations and at different evolutionary stages. We confirm the unified model proposed by Dai et al., which predicts that the observed emission largely depends on the viewing angle of the observer with respect to the disk orientation. Furthermore, we find that disks with higher accretion rates have elevated wind and disk densities, which increases the reprocessing of the high-energy radiation and thus generally augments the optical-to-X-ray flux ratio along a particular viewing angle. This implies that at later times, as the accretion level declines, we expect that more X-rays will leak out along intermediate viewing angles. Such dynamical model for TDEs can provide a natural explanation for the diversity in the emission properties observed in TDEs at peak and along their temporal evolution.
more »
« less
- PAR ID:
- 10372416
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 937
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L28
- Size(s):
- Article No. L28
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Disk continuum reverberation mapping is one of the primary ways we learn about active galactic nuclei (AGN) accretion disks. Reverberation mapping assumes that time-varying X-rays incident on the accretion disk drive variability in UV–optical light curves emitted by AGN disks and uses lags between X-ray and UV–optical variability on the light-crossing timescale to measure the radial temperature profile and extent of AGN disks. However, recent reverberation mapping campaigns have revealed oddities in some sources, such as weakly correlated X-ray and UV light curves, longer than anticipated lags, and evidence of intrinsic variability from disk fluctuations. To understand how X-ray reverberation works with realistic accretion disk structures, we perform 3D multifrequency radiation magnetohydrodynamic simulations of X-ray reprocessing by the UV-emitting region of an AGN disk using sophisticated opacity models that include line opacities for both the X-ray and UV radiation. We find there are two important factors that determine whether X-ray irradiation and UV emission will be well-correlated: the ratio of X-ray to UV luminosity and significant absorption. When these factors are met, the reprocessing of X-rays into UV is nearly instantaneous, as is often assumed, although linear reprocessing models are insufficient to fully capture X-ray reprocessing in our simulations. Nevertheless, we can still easily recover mock lags in our light curves using software that assumes linear reprocessing. Finally, the X-rays in our simulation heat the disk, increasing temperatures by a factor of 2–5 in the optically thin region, which could help explain the discrepancy between measured and anticipated lags.more » « less
-
Aims. The modelling of spectroscopic observations of tidal disruption events (TDEs) to date suggests that the newly formed accretion disks are mostly quasi-circular. In this work we study the transient event AT 2020zso, hosted by an active galactic nucleus (AGN; as inferred from narrow emission line diagnostics), with the aim of characterising the properties of its newly formed accretion flow. Methods. We classify AT 2020zso as a TDE based on the blackbody evolution inferred from UV/optical photometric observations and spectral line content and evolution. We identify transient, double-peaked Bowen (N III ), He I , He II, and H α emission lines. We model medium-resolution optical spectroscopy of the He II (after careful de-blending of the N III contribution) and H α lines during the rise, peak, and early decline of the light curve using relativistic, elliptical accretion disk models. Results. We find that the spectral evolution before the peak can be explained by optical depth effects consistent with an outflowing, optically thick Eddington envelope. Around the peak, the envelope reaches its maximum extent (approximately 10 15 cm, or ∼3000–6000 gravitational radii for an inferred black hole mass of 5−10 × 10 5 M ⊙ ) and becomes optically thin. The H α and He II emission lines at and after the peak can be reproduced with a highly inclined ( i = 85 ± 5 degrees), highly elliptical ( e = 0.97 ± 0.01), and relatively compact ( R in = several 100 R g and R out = several 1000 R g ) accretion disk. Conclusions. Overall, the line profiles suggest a highly elliptical geometry for the new accretion flow, consistent with theoretical expectations of newly formed TDE disks. We quantitatively confirm, for the first time, the high inclination nature of a Bowen (and X-ray dim) TDE, consistent with the unification picture of TDEs, where the inclination largely determines the observational appearance. Rapid line profile variations rule out the binary supermassive black hole hypothesis as the origin of the eccentricity; these results thus provide a direct link between a TDE in an AGN and the eccentric accretion disk. We illustrate for the first time how optical spectroscopy can be used to constrain the black hole spin, through (the lack of) disk precession signatures (changes in inferred inclination). We constrain the disk alignment timescale to > 15 days in AT2020zso, which rules out high black hole spin values ( a < 0.8) for M BH ∼ 10 6 M ⊙ and disk viscosity α ≳ 0.1.more » « less
-
Abstract Tidal disruption events (TDEs) offer a unique way to study dormant black holes. While the number of observed TDEs has grown thanks to the emergence of wide-field surveys in the past few decades, questions regarding the nature of the observed optical, UV, and X-ray emission remain. We present a uniformly selected sample of 30 spectroscopically classified TDEs from the Zwicky Transient Facility Phase I survey operations with follow-up Swift UV and X-ray observations. Through our investigation into correlations between light-curve properties, we recover a shallow positive correlation between the peak bolometric luminosity and decay timescales. We introduce a new spectroscopic class of TDE, TDE-featureless, which are characterized by featureless optical spectra. The new TDE-featureless class shows larger peak bolometric luminosities, peak blackbody temperatures, and peak blackbody radii. We examine the differences between the X-ray bright and X-ray faint populations of TDEs in this sample, finding that X-ray bright TDEs show higher peak blackbody luminosities than the X-ray faint subsample. This sample of optically selected TDEs is the largest sample of TDEs from a single survey yet, and the systematic discovery, classification, and follow-up of this sample allows for robust characterization of TDE properties, an important stepping stone looking forward toward the Rubin era.more » « less
-
Abstract We present fully relativistic predictions for the electromagnetic emission produced by accretion disks surrounding spinning and nonspinning supermassive binary black holes on the verge of merging. We use the codeBothrosto post-process data from 3D general relativistic magnetohydrodynamic simulations via ray-tracing calculations. These simulations model the dynamics of a circumbinary disk and the mini-disks that form around two equal-mass black holes orbiting each other at an initial separation of 20 gravitational radii, and evolve the system for more than 10 orbits in the inspiral regime. We model the emission as the sum of thermal blackbody radiation emitted by an optically thick accretion disk and a power-law spectrum extending to hard X-rays emitted by a hot optically thin corona. We generate time-dependent spectra, images, and light curves at various frequencies to investigate intrinsic periodic signals in the emission, as well as the effects of the black hole spin. We find that prograde black hole spin makes mini-disks brighter since the smaller innermost stable circular orbit angular momentum demands more dissipation before matter plunges to the horizon. However, compared to mini-disks in larger separation binaries with spinning black holes, our mini-disks are less luminous: unlike those systems, their mass accretion rate is lower than in the circumbinary disk, and they radiate with lower efficiency because their inflow times are shorter. Compared to a single black hole system matched in mass and accretion rate, these binaries have spectra noticeably weaker and softer in the UV. Finally, we discuss the implications of our findings for the potential observability of these systems.more » « less
An official website of the United States government
