skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transcription factors perform a 2-step search of the nucleus
Abstract Transcription factors regulate gene expression by binding to regulatory DNA and recruiting regulatory protein complexes. The DNA-binding and protein-binding functions of transcription factors are traditionally described as independent functions performed by modular protein domains. Here, I argue that genome binding can be a 2-part process with both DNA-binding and protein-binding steps, enabling transcription factors to perform a 2-step search of the nucleus to find their appropriate binding sites in a eukaryotic genome. I support this hypothesis with new and old results in the literature, discuss how this hypothesis parsimoniously resolves outstanding problems, and present testable predictions.  more » « less
Award ID(s):
2112057
PAR ID:
10372572
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Genetics
Volume:
222
Issue:
2
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High Mobility Group Box (HMGB) proteins are small architectural DNA binding proteins that regulate multiple genomic processes such as DNA damage repair, nucleosome sliding, telomere homeostasis, and transcription. In doing so they control both normal cellular functions and impact a myriad of disease states, including cancers and autoimmune diseases. HMGB proteins bind to DNA and nucleosomes to modulate the local chromatin environment, which facilitates the binding of regulatory protein factors to the genome and modulates higher order chromosomal organization. Numerous studies over the years have characterized the structure and function of interactions between HMGB proteins and DNA, both biochemically and inside cells, providing valuable mechanistic insight as well as evidence these interactions influence pathological processes. This review highlights recent studies supporting the roles of HMGB1 and HMGB2 in global organization of the genome, as well as roles in transcriptional regulation and telomere maintenance via interactions with G-quadruplex structures. Moreover, emerging models for how HMGB proteins function as RNA binding proteins are presented. Nuclear HMGB proteins have broad regulatory potential to impact numerous aspects of cellular metabolism in normal and disease states. 
    more » « less
  2. Polen, Tino (Ed.)
    ABSTRACT Regulation of gene expression is a vital component of cellular biology. Transcription factor proteins often bind regulatory DNA sequences upstream of transcription start sites to facilitate the activation or repression of RNA polymerase. Research laboratories have devoted many projects to understanding the transcription regulatory networks for transcription factors, as these regulated genes provide critical insight into the biology of the host organism. Various in vivo and in vitro assays have been developed to elucidate transcription regulatory networks. Several assays, including SELEX-seq and ChIP-seq, capture DNA-bound transcription factors to determine the preferred DNA-binding sequences, which can then be mapped to the host organism’s genome to identify candidate regulatory genes. In this protocol, we describe an alternative in vitro , iterative selection approach to ascertaining DNA-binding sequences of a transcription factor of interest using restriction endonuclease, protection, selection, and amplification (REPSA). Contrary to traditional antibody-based capture methods, REPSA selects for transcription factor-bound DNA sequences by challenging binding reactions with a type IIS restriction endonuclease. Cleavage-resistant DNA species are amplified by PCR and then used as inputs for the next round of REPSA. This process is repeated until a protected DNA species is observed by gel electrophoresis, which is an indication of a successful REPSA experiment. Subsequent high-throughput sequencing of REPSA-selected DNAs accompanied by motif discovery and scanning analyses can be used for determining transcription factor consensus binding sequences and potential regulated genes, providing critical first steps in determining organisms’ transcription regulatory networks. IMPORTANCE Transcription regulatory proteins are an essential class of proteins that help maintain cellular homeostasis by adapting the transcriptome based on environmental cues. Dysregulation of transcription factors can lead to diseases such as cancer, and many eukaryotic and prokaryotic transcription factors have become enticing therapeutic targets. Additionally, in many understudied organisms, the transcription regulatory networks for uncharacterized transcription factors remain unknown. As such, the need for experimental techniques to establish transcription regulatory networks is paramount. Here, we describe a step-by-step protocol for REPSA, an inexpensive, iterative selection technique to identify transcription factor-binding sequences without the need for antibody-based capture methods. 
    more » « less
  3. Komeili, Arash (Ed.)
    ABSTRACT Histone proteins are found across diverse lineages of Archaea , many of which package DNA and form chromatin. However, previous research has led to the hypothesis that the histone-like proteins of high-salt-adapted archaea, or halophiles, function differently. The sole histone protein encoded by the model halophilic species Halobacterium salinarum , HpyA, is nonessential and expressed at levels too low to enable genome-wide DNA packaging. Instead, HpyA mediates the transcriptional response to salt stress. Here we compare the features of genome-wide binding of HpyA to those of HstA, the sole histone of another model halophile, Haloferax volcanii . hstA , like hpyA , is a nonessential gene. To better understand HpyA and HstA functions, protein-DNA binding data (chromatin immunoprecipitation sequencing [ChIP-seq]) of these halophilic histones are compared to publicly available ChIP-seq data from DNA binding proteins across all domains of life, including transcription factors (TFs), nucleoid-associated proteins (NAPs), and histones. These analyses demonstrate that HpyA and HstA bind the genome infrequently in discrete regions, which is similar to TFs but unlike NAPs, which bind a much larger genomic fraction. However, unlike TFs that typically bind in intergenic regions, HpyA and HstA binding sites are located in both coding and intergenic regions. The genome-wide dinucleotide periodicity known to facilitate histone binding was undetectable in the genomes of both species. Instead, TF-like and histone-like binding sequence preferences were detected for HstA and HpyA, respectively. Taken together, these data suggest that halophilic archaeal histones are unlikely to facilitate genome-wide chromatin formation and that their function defies categorization as a TF, NAP, or histone. IMPORTANCE Most cells in eukaryotic species—from yeast to humans—possess histone proteins that pack and unpack DNA in response to environmental cues. These essential proteins regulate genes necessary for important cellular processes, including development and stress protection. Although the histone fold domain originated in the domain of life Archaea , the function of archaeal histone-like proteins is not well understood relative to those of eukaryotes. We recently discovered that, unlike histones of eukaryotes, histones in hypersaline-adapted archaeal species do not package DNA and can act as transcription factors (TFs) to regulate stress response gene expression. However, the function of histones across species of hypersaline-adapted archaea still remains unclear. Here, we compare hypersaline histone function to a variety of DNA binding proteins across the tree of life, revealing histone-like behavior in some respects and specific transcriptional regulatory function in others. 
    more » « less
  4. Abstract Plants respond to wounding stress by changing gene expression patterns and inducing the production of hormones including jasmonic acid. This wounding transcriptional response activates specialized metabolism pathways such as the glucosinolate pathways in Arabidopsis thaliana. While the regulatory factors and sequences controlling a subset of wound-response genes are known, it remains unclear how wound response is regulated globally. Here, we how these responses are regulated by incorporating putative cis-regulatory elements, known transcription factor binding sites, in vitro DNA affinity purification sequencing, and DNase I hypersensitive sites to predict genes with different wound-response patterns using machine learning. We observed that regulatory sites and regions of open chromatin differed between genes upregulated at early and late wounding time-points as well as between genes induced by jasmonic acid and those not induced. Expanding on what we currently know, we identified cis-elements that improved model predictions of expression clusters over known binding sites. Using a combination of genome editing, in vitro DNA-binding assays, and transient expression assays using native and mutated cis-regulatory elements, we experimentally validated four of the predicted elements, three of which were not previously known to function in wound-response regulation. Our study provides a global model predictive of wound response and identifies new regulatory sequences important for wounding without requiring prior knowledge of the transcriptional regulators. 
    more » « less
  5. Abstract Structural, regulatory and enzymatic proteins interact with DNA to maintain a healthy and functional genome. Yet, our structural understanding of how proteins interact with DNA is limited. We present MELD-DNA, a novel computational approach to predict the structures of protein–DNA complexes. The method combines molecular dynamics simulations with general knowledge or experimental information through Bayesian inference. The physical model is sensitive to sequence-dependent properties and conformational changes required for binding, while information accelerates sampling of bound conformations. MELD-DNA can: (i) sample multiple binding modes; (ii) identify the preferred binding mode from the ensembles; and (iii) provide qualitative binding preferences between DNA sequences. We first assess performance on a dataset of 15 protein–DNA complexes and compare it with state-of-the-art methodologies. Furthermore, for three selected complexes, we show sequence dependence effects of binding in MELD predictions. We expect that the results presented herein, together with the freely available software, will impact structural biology (by complementing DNA structural databases) and molecular recognition (by bringing new insights into aspects governing protein–DNA interactions). 
    more » « less