skip to main content


Title: Adaptive bandwidth management for entanglement distribution in quantum networks

Flexible grid wavelength division multiplexing is a powerful tool in lightwave communications to maximize spectral efficiency. In the emerging field of quantum networking, the need for effective resource provisioning is particularly acute, given the generally lower power levels, higher sensitivity to loss, and inapplicability of optical detection and retransmission. In this letter, we leverage flex grid technology to demonstrate reconfigurable distribution of quantum entanglement in a four-user tabletop network. By adaptively partitioning bandwidth with a single wavelength-selective switch, we successfully equalize two-party coincidence rates that initially differ by over two orders of magnitude. Our scalable approach introduces loss that is fixed with the number of users, offering a practical path for the establishment and management of quality-of-service guarantees in large quantum networks.

 
more » « less
Award ID(s):
1839191
NSF-PAR ID:
10372854
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
8
Issue:
3
ISSN:
2334-2536
Page Range / eLocation ID:
Article No. 329
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bis(bithienyl)-1,2-dicyanoethene (4TCE) is a photoswitch that operates via reversible E / Z photoisomerization following absorption of visible light. cis -to- trans photoisomerization of 4TCE requires excitation below 470 nm, is relatively inefficient (quantum yield < 5%) and occurs via the lowest-lying triplet. We present excitation-wavelength dependent (565–420 nm) transient absorption (TA) studies to probe the photophysics of cis -to- trans isomerization to identify sources of switching inefficiency. TA data reveals contributions from more than one switch conformer and relaxation cascades between multiple states. Fast (∼4 ps) and slow (∼40 ps) components of spectral dynamics observed at low excitation energies (>470 nm) are readily attributed to deactivation of two conformers; this assignment is supported by computed thermal populations and absorption strengths of two molecular geometries (P A and P B ) characterized by roughly parallel dipoles for the thiophenes on opposite sides of the ethene bond. Only the P B conformer is found to contribute to triplet population and the switching of cis -4TCE: high-energy excitation (<470 nm) of P B involves direct excitation to S 2 , relaxation from which prepares an ISC-active S 1 geometry (ISC QY 0.4–0.67, k ISC ∼ 1.6–2.6 × 10 −9 s −1 ) that is the gateway to triplet population and isomerization. We ascribe low cis -to- trans isomerization yield to excitation of the nonreactive P A conformer (75–85% loss) as well as loses along the P B S 2 → S 1 → T 1 cascade (10–20% loss). In contrast, electrocyclization is inhibited by the electronic character of the excited states, as well as a non-existent thermal population of a reactive “antiparallel” ring conformation. 
    more » « less
  2. Abstract

    Superconducting resonators are widely used in many applications such as qubit readout for quantum computing, and kinetic inductance detectors. These resonators are susceptible to numerous loss and noise mechanisms, especially the dissipation due to two‐level systems (TLS) which become the dominant source of loss in the few‐photon and low temperature regime. In this study, capacitively‐coupled aluminum half‐wavelength coplanar waveguide resonators are investigated. Surprisingly, the loss of the resonators is observed to decrease with a lowering temperature at low excitation powers and temperatures below the TLS saturation. This behavior is attributed to the reduction of the TLS resonant response bandwidth with decreasing temperature and power to below the detuning between the TLS and the resonant photon frequency in a discrete ensemble of TLS. When response bandwidths of TLS are smaller than their detunings from the resonance, the resonant response and thus the loss is reduced. At higher excitation powers, the loss follows a logarithmic power dependence, consistent with predictions from the generalized tunneling model (GTM). A model combining the discrete TLS ensemble with the GTM is proposed and matches the temperature and power dependence of the measured internal loss of the resonator with reasonable parameters.

     
    more » « less
  3. Abstract

    The scaling of many photonic quantum information processing systems is ultimately limited by the flux of quantum light throughout an integrated photonic circuit. Source brightness and waveguide loss set basic limits on the on-chip photon flux. While substantial progress has been made, separately, towards ultra-low loss chip-scale photonic circuits and high brightness single-photon sources, integration of these technologies has remained elusive. Here, we report the integration of a quantum emitter single-photon source with a wafer-scale, ultra-low loss silicon nitride photonic circuit. We demonstrate triggered and pure single-photon emission into a Si3N4photonic circuit with ≈ 1 dB/m propagation loss at a wavelength of ≈ 930 nm. We also observe resonance fluorescence in the strong drive regime, showing promise towards coherent control of quantum emitters. These results are a step forward towards scaled chip-integrated photonic quantum information systems in which storing, time-demultiplexing or buffering of deterministically generated single-photons is critical.

     
    more » « less
  4. Abstract

    Integrated electro-optic (EO) modulators are fundamental photonics components with utility in domains ranging from digital communications to quantum information processing. At telecommunication wavelengths, thin-film lithium niobate modulators exhibit state-of-the-art performance in voltage-length product (VπL), optical loss, and EO bandwidth. However, applications in optical imaging, optogenetics, and quantum science generally require devices operating in the visible-to-near-infrared (VNIR) wavelength range. Here, we realize VNIR amplitude and phase modulators featuringVπL’s of sub-1 V ⋅ cm, low optical loss, and high bandwidth EO response. Our Mach-Zehnder modulators exhibit aVπLas low as 0.55 V ⋅ cm at 738 nm, on-chip optical loss of ~0.7 dB/cm, and EO bandwidths in excess of 35 GHz. Furthermore, we highlight the opportunities these high-performance modulators offer by demonstrating integrated EO frequency combs operating at VNIR wavelengths, with over 50 lines and tunable spacing, and frequency shifting of pulsed light beyond its intrinsic bandwidth (up to 7x Fourier limit) by an EO shearing method.

     
    more » « less
  5. Optical nonlinearity plays a pivotal role in quantum information processing using photons, from heralded single-photon sources and coherent wavelength conversion to long-sought quantum repeaters. Despite the availability of strong dipole coupling to quantum emitters, achieving strong bulk optical nonlinearity is highly desirable. Here, we realize quantum nanophotonic integrated circuits in thin-film InGaP with, to our knowledge, a record-high ratio of1.5%<#comment/>between the single-photon nonlinear coupling rate (g/2π<#comment/>=11.2MHz) and cavity-photon loss rate. We demonstrate second-harmonic generation with an efficiency of71200±<#comment/>10300%<#comment/>/Win the InGaP photonic circuit and photon-pair generation via degenerate spontaneous parametric downconversion with an ultrahigh rate exceeding 27.5 MHz/µW—an order of magnitude improvement of the state of the art—and a large coincidence-to-accidental ratio up to1.4×<#comment/>104. Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.

     
    more » « less