Abstract MotivationThe Galaxy application is a popular open-source framework for data intensive sciences, counting thousands of monthly users across more than 100 public servers. To support a growing number of users and a greater variety of use cases, the complexity of a production-grade Galaxy installation has also grown, requiring more administration effort. There is a need for a rapid and reproducible Galaxy deployment method that can be maintained at high-availability with minimal maintenance. ResultsWe describe the Galaxy Helm chart that codifies all elements of a production-grade Galaxy installation into a single package. Deployable on Kubernetes clusters, the chart encapsulates supporting software services and implements the best-practices model for running Galaxy. It is also the most rapid method available for deploying a scalable, production-grade Galaxy instance on one’s own infrastructure. The chart is highly configurable, allowing systems administrators to swap dependent services if desired. Notable uses of the chart include on-demand, fully-automated deployments on AnVIL, providing training infrastructure for the Bioconductor project, and as the AWS-recommended solution for running Galaxy on the Amazon cloud. Availability and implementationThe source code for Galaxy Helm is available at https://github.com/galaxyproject/galaxy-helm, the corresponding Helm package at https://github.com/CloudVE/helm-charts, and the required Galaxy container image https://github.com/galaxyproject/galaxy-docker-k8s.
more »
« less
Cosmic Crashes
Galaxy Collisions Preview Milky Way’s Fate New revelations about how galaxies collide show what might happen when our galaxy meets Andromeda
more »
« less
- Award ID(s):
- 1816838
- PAR ID:
- 10372989
- Editor(s):
- Moskowitz, Clara
- Date Published:
- Journal Name:
- Scientific American
- Volume:
- 325
- Issue:
- 6
- ISSN:
- 0036-8733
- Page Range / eLocation ID:
- 32-39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The DMASS sample is a photometric sample from the DES Year 1 data set designed to replicate the properties of the CMASS sample from BOSS, in support of a joint analysis of DES and BOSS beyond the small overlapping area. In this paper, we present the measurement of galaxy–galaxy lensing using the DMASS sample as gravitational lenses in the DES Y1 imaging data. We test a number of potential systematics that can bias the galaxy–galaxy lensing signal, including those from shear estimation, photometric redshifts, and observing conditions. After careful systematic tests, we obtain a highly significant detection of the galaxy–galaxy lensing signal, with total S/N = 25.7. With the measured signal, we assess the feasibility of using DMASS as gravitational lenses equivalent to CMASS, by estimating the galaxy-matter cross-correlation coefficient rcc. By jointly fitting the galaxy–galaxy lensing measurement with the galaxy clustering measurement from CMASS, we obtain $$r_{\rm cc}=1.09^{+0.12}_{-0.11}$$ for the scale cut of $$4 \, h^{-1}{\rm \,\,Mpc}$$ and $$r_{\rm cc}=1.06^{+0.13}_{-0.12}$$ for $$12 \, h^{-1}{\rm \,\,Mpc}$$ in fixed cosmology. By adding the angular galaxy clustering of DMASS, we obtain rcc = 1.06 ± 0.10 for the scale cut of $$4 \, h^{-1}{\rm \,\,Mpc}$$ and rcc = 1.03 ± 0.11 for $$12 \, h^{-1}{\rm \,\,Mpc}$$. The resulting values of rcc indicate that the lensing signal of DMASS is statistically consistent with the one that would have been measured if CMASS had populated the DES region within the given statistical uncertainty. The measurement of galaxy–galaxy lensing presented in this paper will serve as part of the data vector for the forthcoming cosmology analysis in preparation.more » « less
-
ABSTRACT Galaxy–galaxy lensing is a powerful probe of the connection between galaxies and their host dark matter haloes, which is important both for galaxy evolution and cosmology. We extend the measurement and modelling of the galaxy–galaxy lensing signal in the recent Dark Energy Survey Year 3 cosmology analysis to the highly non-linear scales (∼100 kpc). This extension enables us to study the galaxy–halo connection via a Halo Occupation Distribution (HOD) framework for the two lens samples used in the cosmology analysis: a luminous red galaxy sample (redmagic) and a magnitude-limited galaxy sample (maglim). We find that redmagic (maglim) galaxies typically live in dark matter haloes of mass log10(Mh/M⊙) ≈ 13.7 which is roughly constant over redshift (13.3−13.5 depending on redshift). We constrain these masses to $${\sim}15{{\ \rm per\ cent}}$$, approximately 1.5 times improvement over the previous work. We also constrain the linear galaxy bias more than five times better than what is inferred by the cosmological scales only. We find the satellite fraction for redmagic (maglim) to be ∼0.1−0.2 (0.1−0.3) with no clear trend in redshift. Our constraints on these halo properties are broadly consistent with other available estimates from previous work, large-scale constraints, and simulations. The framework built in this paper will be used for future HOD studies with other galaxy samples and extensions for cosmological analyses.more » « less
-
ABSTRACT We present cosmological parameter constraints based on a joint modelling of galaxy–lensing cross-correlations and galaxy clustering measurements in the SDSS, marginalizing over small-scale modelling uncertainties using mock galaxy catalogues, without explicit modelling of galaxy bias. We show that our modelling method is robust to the impact of different choices for how galaxies occupy dark matter haloes and to the impact of baryonic physics (at the $$\sim 2{{\ \rm per\ cent}}$$ level in cosmological parameters) and test for the impact of covariance on the likelihood analysis and of the survey window function on the theory computations. Applying our results to the measurements using galaxy samples from BOSS and lensing measurements using shear from SDSS galaxies and CMB lensing from Planck, with conservative scale cuts, we obtain $$S_8\equiv \left(\frac{\sigma _8}{0.8228}\right)^{0.8}\left(\frac{\Omega _\mathrm{ m}}{0.307}\right)^{0.6}=0.85\pm 0.05$$ (stat.) using LOWZ × SDSS galaxy lensing, and S8 = 0.91 ± 0.1 (stat.) using combination of LOWZ and CMASS × Planck CMB lensing. We estimate the systematic uncertainty in the galaxy–galaxy lensing measurements to be $$\sim 6{{\ \rm per\ cent}}$$ (dominated by photometric redshift uncertainties) and in the galaxy–CMB lensing measurements to be $$\sim 3{{\ \rm per\ cent}}$$, from small-scale modelling uncertainties including baryonic physics.more » « less
-
ABSTRACT We perform high-resolution hydrodynamical simulations using the framework of MACER to investigate supermassive black hole (SMBH) feeding and feedback in a massive compact galaxy, which has a small effective radius but a large stellar mass, with a simulation duration of 10 Gyr. We compare the results with a reference galaxy with a similar stellar mass but a less concentrated stellar density distribution, as typically found in local elliptical galaxies. We find that about 10 per cent of the time, the compact galaxy develops multiphase gas within a few kpc, but the accretion flow through the inner boundary below the Bondi radius is always a single phase. The inflow rate in the compact galaxy is several times larger than in the reference galaxy, mainly due to the higher gas density caused by the more compact stellar distribution. Such a higher inflow rate results in stronger SMBH feeding and feedback and a larger fountain-like inflow-outflow structure. Compared to the reference galaxy, the star formation rate in the compact galaxy is roughly two orders of magnitude higher but is still low enough to be considered quiescent. Over the whole evolution period, the black hole mass grows by ∼50 per cent in the compact galaxy, much larger than the value of ∼ 3 per cent in the reference galaxy.more » « less
An official website of the United States government

