The size and frequency of wildland fires in the western United States have dramatically increased in recent years. On high-fire-risk days, a small fire ignition can rapidly grow and become out of control. Early detection of fire ignitions from initial smoke can assist the response to such fires before they become difficult to manage. Past deep learning approaches for wildfire smoke detection have suffered from small or unreliable datasets that make it difficult to extrapolate performance to real-world scenarios. In this work, we present the Fire Ignition Library (FIgLib), a publicly available dataset of nearly 25,000 labeled wildfire smoke images as seen from fixed-view cameras deployed in Southern California. We also introduce SmokeyNet, a novel deep learning architecture using spatiotemporal information from camera imagery for real-time wildfire smoke detection. When trained on the FIgLib dataset, SmokeyNet outperforms comparable baselines and rivals human performance. We hope that the availability of the FIgLib dataset and the SmokeyNet architecture will inspire further research into deep learning methods for wildfire smoke detection, leading to automated notification systems that reduce the time to wildfire response.
This content will become publicly available on August 1, 2023
Nemo: An Open-Source Transformer-Supercharged Benchmark for Fine-Grained Wildfire Smoke Detection
Deep-learning (DL)-based object detection algorithms can greatly benefit the community at large in fighting fires, advancing climate intelligence, and reducing health complications caused by hazardous smoke particles. Existing DL-based techniques, which are mostly based on convolutional networks, have proven to be effective in wildfire detection. However, there is still room for improvement. First, existing methods tend to have some commercial aspects, with limited publicly available data and models. In addition, studies aiming at the detection of wildfires at the incipient stage are rare. Smoke columns at this stage tend to be small, shallow, and often far from view, with low visibility. This makes finding and labeling enough data to train an efficient deep learning model very challenging. Finally, the inherent locality of convolution operators limits their ability to model long-range correlations between objects in an image. Recently, encoder–decoder transformers have emerged as interesting solutions beyond natural language processing to help capture global dependencies via self- and inter-attention mechanisms. We propose Nemo: a set of evolving, free, and open-source datasets, processed in standard COCO format, and wildfire smoke and fine-grained smoke density detectors, for use by the research community. We adapt Facebook’s DEtection TRansformer (DETR) to wildfire detection, which results in more »
- Publication Date:
- NSF-PAR ID:
- 10373823
- Journal Name:
- Remote Sensing
- Volume:
- 14
- Issue:
- 16
- Page Range or eLocation-ID:
- 3979
- ISSN:
- 2072-4292
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »
-
Deep learning (DL) algorithms have achieved significantly high performance in object detection tasks. At the same time, augmented reality (AR) techniques are transforming the ways that we work and connect with people. With the increasing popularity of online and hybrid learning, we propose a new framework for improving students’ learning experiences with electrical engineering lab equipment by incorporating the abovementioned technologies. The DL powered automatic object detection component integrated into the AR application is designed to recognize equipment such as multimeter, oscilloscope, wave generator, and power supply. A deep neural network model, namely MobileNet-SSD v2, is implemented for equipment detection using TensorFlow’s object detection API. When a piece of equipment is detected, the corresponding AR-based tutorial will be displayed on the screen. The mean average precision (mAP) of the developed equipment detection model is 81.4%, while the average recall of the model is 85.3%. Furthermore, to demonstrate practical application of the proposed framework, we develop a multimeter tutorial where virtual models are superimposed on real multimeters. The tutorial includes images and web links as well to help users learn more effectively. The Unity3D game engine is used as the primary development tool for this tutorial to integrate DL and ARmore »
-
Already known as densely populated areas with land use including housing, transportation, sanitation, utilities and communication, nowadays, cities tend to grow even bigger. Genuine road-user's types are emerging with further technological developments to come. As cities population size escalates, and roads getting congested, government agencies such as Department of Transportation (DOT) through the National Highway Traffic Safety Administration (NHTSA) are in pressing need to perfect their management systems with new efficient technologies. The challenge is to anticipate on never before seen problems, in their effort to save lives and implement sustainable cost-effective management systems. To make things yet more complicated and a bit daunting, self-driving car will be authorized in a close future in crowded major cities where roads are to be shared among pedestrians, cyclists, cars, and trucks. Roads sizes and traffic signaling will need to be constantly adapted accordingly. Counting and classifying turning vehicles and pedestrians at an intersection is an exhausting task and despite traffic monitoring systems use, human interaction is heavily required for counting. Our approach to resolve traffic intersection turning-vehicles counting is less invasive, requires no road dig up or costly installation. Live or recorded videos from already installed camera all over the cities canmore »
-
The objective of this study was to assess feasibility of integrating a coupled fire-atmosphere model within an air-quality forecast system to create a multiscale air-quality modeling framework designed to simulate wildfire smoke. For this study, a coupled fire-atmosphere model, WRF-SFIRE, was integrated, one-way, with the AIRPACT air-quality modeling system. WRF-SFIRE resolved local meteorology, fire growth, the fire plume rise, and smoke dispersion, and provided AIRPACT with fire inputs. The WRF-SFIRE-forecasted fire area and the explicitly resolved vertical smoke distribution replaced the parameterized BlueSky fire inputs used by AIRPACT. The WRF-SFIRE/AIRPACT integrated framework was successfully tested for two separate wildfire events (2015 Cougar Creek and 2016 Pioneer fires). The execution time for the WRF-SFIRE simulations was <3 h for a 48 h-long forecast, suggesting that integrating coupled fire-atmosphere simulations within the daily AIRPACT cycle is feasible. While the WRF-SFIRE forecasts realistically captured fire growth 2 days in advance, the largest improvements in the air quality simulations were associated with the wildfire plume rise. WRF-SFIRE-estimated plume tops were within 300-m of satellite-estimated plume top heights for both case studies analyzed in this study. Air quality simulations produced by AIRPACT with and without WRF-SFIRE inputs were evaluated with nearby PM 2 . 5more »