skip to main content

Title: The Vertical Middepth Ocean Density Profile: An Interplay between Southern Ocean Dynamics and Interior Vertical Diffusivity
Abstract The middepth ocean temperature profile was found by Munk in 1966 to agree with an exponential profile and shown to be consistent with a vertical advective–diffusive balance. However, tracer release experiments show that vertical diffusivity in the middepth ocean is an order of magnitude too small to explain the observed 1-km exponential scale. Alternative mechanisms suggested that nearly all middepth water upwells adiabatically in the Southern Ocean (SO). In this picture, SO eddies and wind set SO isopycnal slopes and therefore determine a nonvanishing middepth interior stratification even in the adiabatic limit. The effect of SO eddies on SO isopycnal slopes can be understood via either a marginal criticality condition or a near-vanishing SO residual deep overturning condition in the adiabatic limit. We examine the interplay between SO dynamics and interior mixing in setting the exponential profiles of σ 2 and ∂ z σ 2 . We use eddy-permitting numerical simulations, in which we artificially change the diapycnal mixing only away from the SO. We find that SO isopycnal slopes change in response to changes in the interior diapycnal mixing even when the wind forcing is constant, consistent with previous studies (that did not address these near-exponential profiles). However, in the limit of small interior mixing, the interior ∂ z σ 2 profile is not exponential, suggesting that SO processes alone, in an adiabatic limit, do not lead to the observed near-exponential structures of such profiles. The results suggest that while SO wind and eddies contribute to the nonvanishing middepth interior stratification, the exponential shape of the ∂ z σ 2 profiles must also involve interior diapycnal mixing.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Physical Oceanography
Page Range / eLocation ID:
2479 to 2492
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large‐scale loss of oxygen under global warming is termed “ocean deoxygenation” and is caused by the imbalance between physical supply and biological consumption of oxygen in the ocean interior. Significant progress has been made in the theoretical understanding of ocean deoxygenation; however, many questions remain unresolved. The oxygen change in the tropical thermocline is poorly understood, with diverging projections among different models. Physical oxygen supply is controlled by a suite of processes that transport oxygen‐rich surface waters into the interior ocean, which is expected to weaken due to increasing stratification under global warming. Using a numerical model and a series of sensitivity experiments, the role of ocean mixing is examined in terms of effects on the mean state and the response to a transient warming. Both vertical and horizontal (isopycnal) mixing coefficients are systematically varied over a wide range, and the resulting oxygen distributions in equilibrated and transient simulations are examined. The spatial patterns of oxygen loss are sensitive to both vertical and isopycnal mixing, and the sign of tropical oxygen trend under climate warming can reverse depending on the choice of mixing parameters. An elevated level of isopycnal mixing disrupts the vertical advective‐diffusive balance of the tropical thermocline, increasing the mean state oxygen as well as the magnitude of the transient oxygen decline. These results provide first‐order explanations for the diverging behaviors of simulated tropical oxygen with respect to ocean mixing parameters.

    more » « less
  2. Within the pycnocline, where diapycnal mixing is suppressed, both the vertical movement (uplift) of isopycnal surfaces and upward motion along sloping isopycnals supply nutrients to the euphotic layer, but the relative importance of each of these mechanisms is unknown. We present a method for decomposing vertical velocity w into two components in a Lagrangian frame: vertical velocity along sloping isopycnal surfaces [Formula: see text] and the adiabatic vertical velocity of isopycnal surfaces [Formula: see text]. We show that [Formula: see text], where [Formula: see text] is the isopycnal slope and [Formula: see text] is the geometric aspect ratio of the flow, and that [Formula: see text] accounts for 10%–25% of the total vertical velocity w for isopycnal slopes representative of the midlatitude pycnocline. We perform the decomposition of w in a process study model of a midlatitude eddying flow field generated with a range of isopycnal slopes. A spectral decomposition of the velocity components shows that while [Formula: see text] is the largest contributor to vertical velocity, [Formula: see text] is of comparable magnitude at horizontal scales less than about 10 km, that is, at submesoscales. Increasing the horizontal grid resolution of models is known to increase vertical velocity; this increase is disproportionately due to better resolution of [Formula: see text], as is shown here by comparing 1- and 4-km resolution model runs. Along-isopycnal vertical transport can be an important contributor to the vertical flux of tracers, including oxygen, nutrients, and chlorophyll, although we find weak covariance between vertical velocity and nutrient anomaly in our model.

    more » « less
  3. Abstract

    The vertical structure of ocean eddies is generally surface-intensified, commonly attributed to the dominant baroclinic modes arising from the boundary conditions (BCs). Conventional BC considerations mostly focus on either flat- or rough-bottom conditions. The impact of surface buoyancy anomalies—often represented by surface potential vorticity (PV) anomalies—has not been fully explored. Here, we study the role of the surface PV in setting the vertical distribution of eddy kinetic energy (EKE) in an idealized adiabatic ocean model driven by wind stress. The simulated EKE profile in the extratropical ocean tends to peak at the surface and have ane-folding depth typically smaller than half of the ocean depth. This vertical structure can be reasonably represented by a single surface quasigeostrophic (SQG) mode at the energy-containing scale resulting from the large-scale PV structure. Due to isopycnal outcropping and interior PV homogenization, the surface meridional PV gradient is substantially stronger than the interior PV gradient, yielding surface-trapped baroclinically unstable modes with horizontal scales comparable to or smaller than the deformation radius. These surface-trapped eddies then grow in size both horizontally and vertically through an inverse energy cascade up to the energy-containing scale, which dominates the vertical distribution of EKE. As for smaller horizontal scales, the EKE distribution decays faster with depth. Guided by this interpretation, an SQG-based scale-aware parameterization of the EKE profile is proposed. Preliminary offline diagnosis of a high-resolution simulation shows the proposed scheme successfully reproducing the dependence of the vertical structure of EKE on the horizontal grid resolution.

    more » « less
  4. null (Ed.)
    Abstract Theories of the Beaufort Gyre (BG) dynamics commonly represent the halocline as a single layer with a thickness depending on the Eulerian-mean and eddy-induced overturning. However, observations suggest that the isopycnal slope increases with depth, and a theory to explain this profile remains outstanding. Here we develop a multilayer model of the BG, including the Eulerian-mean velocity, mesoscale eddy activity, diapycnal mixing, and lateral boundary fluxes, and use it to investigate the dynamics within the Pacific Winter Water (PWW) layer. Using theoretical considerations, observational data, and idealized simulations, we demonstrate that the eddy overturning is critical in explaining the observed vertical structure. In the absence of the eddy overturning, the Ekman pumping and the relatively weak vertical mixing would displace isopycnals in a nearly parallel fashion, contrary to observations. This study finds that the observed increase of the isopycnal slope with depth in the climatological state of the gyre is consistent with a Gent–McWilliams eddy diffusivity coefficient that decreases by at least 10%–40% over the PWW layer. We further show that the depth-dependent eddy diffusivity profile can explain the relative magnitude of the correlated isopycnal depth and layer thickness fluctuations on interannual time scales. Our inference that the eddy overturning generates the isopycnal layer thickness gradients is consistent with the parameterization of eddies via a Gent–McWilliams scheme but not potential vorticity diffusion. This study implies that using a depth-independent eddy diffusivity, as is commonly done in low-resolution ocean models, may contribute to misrepresentation of the interior BG dynamics. 
    more » « less
  5. Abstract

    We develop a parameterization for representing the effects of submesoscale symmetric instability (SI) in the ocean interior. SI may contribute to water mass modification and mesoscale energy dissipation in flow systems throughout the World Ocean. Dense gravity currents forced by surface buoyancy loss over shallow shelves are a particularly compelling test case, as they are characterized by density fronts and shears susceptible to a wide range of submesoscale instabilities. We present idealized experiments of Arctic shelf overflows employing the GFDL‐MOM6 inz* and isopycnal coordinates. At the highest resolutions, the dense flow undergoes geostrophic adjustment and forms bottom‐ and surface‐intensified jets. The density front along the topography combined with geostrophic shear initiates SI, leading to onset of secondary shear instability, dissipation of geostrophic energy, and turbulent mixing. We explore the impact of vertical coordinate, resolution, and parameterization of shear‐driven mixing on the representation of water mass transformation. We find that in isopycnal and low‐resolutionz* simulations, limited vertical resolution leads to inadequate representation of diapycnal mixing. This motivates our development of a parameterization for SI‐driven turbulence. The parameterization is based on identifying unstable regions through a balanced Richardson number criterion and slumping isopycnals toward a balanced state. The potential energy extracted from the large‐scale flow is assumed to correspond to the kinetic energy of SI which is dissipated through shear mixing. Parameterizing submesoscale instabilities by combining isopycnal slumping with diapycnal mixing becomes crucial as ocean models move toward resolving mesoscale eddies and fronts but not the submesoscale phenomena they host.

    more » « less