Design and construction errors and material deterioration can lead to concrete elements being subjected to high levels of sustained stress well exceeding typical service levels. These high levels of sustained stress have led to structural collapses in the United States and around the world. However, the performance of shear-controlled concrete elements (beams and slab-column connections) under high sustained stress is not well understood. Under high sustained compressive stress (greater than 0.75fc’) concrete will suffer tertiary creep characterized by accelerated permanent strain, leading eventually to a failure. The bond of the reinforcing bars to the concrete is also affected leading to slip. This research presents the results of experimental tests on shear-controlled RC beams that were loaded to 81, 86, and 92 percent of their short-term capacity and observed for about four weeks. Deflection and strain measurements were recorded for each specimen throughout the sustained load test. Under high sustained stress the specimens showed continued deflection with time, with most of the deflection occurring shortly after the application of load. The failure of the specimens exhibited more flexural response than that of the control specimen. The test results show that high levels of sustained stress (up to 92% of their short-term capacity) can be sustained for a prolonged time; however, the deflections and cracking are increased and the ultimate failure mode may be changed. This information will help engineers identify elements nearing failure under high levels of sustained stress.
more »
« less
Time-Dependent Behavior of Reinforced Concrete Beams under High Sustained Loads
High levels of sustained load can lead to time-dependent failure of reinforced concrete (RC) members. This in turn may lead to collapse of all or part of a building. Design errors, construction errors, and material deterioration may lead to concrete elements being subjected to high levels of sustained loads well exceeding typical service loads. Plain concrete can experience compressive failure when subjected to a high sustained stress (over 75% of its short-term strength). However, there is a lack of knowledge about the time-dependent strength and stiffness characteristics of RC members under high sustained loads. This paper presents the results of experimental testing of simply supported shear-controlled RC beams under high sustained loads. Two series of beams, consisting of 4 and 5 beams, were tested at concrete ages of 67 to 543 days to represent in-service concrete structures. The applied sustained loads ranged from 82% to 98% of the short-term capacity and lasted for 24 to 52 days. Test results indicated that high sustained load may eventually lead to failure (collapse); however, the level of load needs to be very close (~98%) to the short-term capacity. Under sustained load, all specimens experienced increased deflection with over half of the deflection increase occurring in the first 24 h. The sustained load increased the deflection at shear failure by 190% on average. The increase in the beam deflection may allow for load redistribution in redundant structural systems. A sharp increase in deflection due to tertiary creep occurred in a short time (~2 min) before failure, indicating little warning of the impending failure.
more »
« less
- Award ID(s):
- 1760915
- PAR ID:
- 10374019
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 4015
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fiber reinforced polymer (FRP) waste is becoming an environmental concern due to the widespread use and non-biodegradable nature of FRP composites. Cutting FRP waste into discrete reinforce-ments (referred to as “needles” hereafter) as coarse aggregate in concrete has been suggested as a possible solution to FRP waste recycling. It has previously been observed in small specimens that FRP needles increase the tensile strength and energy absorption capacity of concrete. This paper presents an experimental investiga-tion into the effect of GFRP needles as coarse aggregate partial replacement in concrete on shear behavior of full-scale reinforced concrete (RC) beams. A total of 10 RC beams without steel stirrups in the critical zone were tested under four-point bending. The volume replacement ratio of the coarse aggregate and the surface type of GFRP needles were chosen as the test parameters. GFRP needles, with either smooth or helically wrapped surfaces, were added to the concrete mix to replace 5% or 10% of coarse aggregate by volume, respectively. All test beams failed in shear in a brittle manner with the ductility being slightly enhanced by the partial replace-ment of coarse aggregate using GFRP needles. An enhancement of 8%-10% in the load carrying capacity was observed in beams with helically wrapped needles, while beams with smooth needles showed a reduction in the load carrying capacity.more » « less
-
Aaleti, Sriram; Okumus, Pinar (Ed.)The unique mechanical properties of ultra-high performance concrete (UHPC) causes changes in failure modes and ductility in reinforced components. Numerous experiments have shown these materials, and others with similar ductile characteristics in tension, can improve the damage tolerance, strength, and ductility of members subjected to large deformations from seismic loading and similar extreme conditions. The use of these materials, however, has not been systematically studied to understand their application at a system-level performance and design procedures have been complicated due to their unconventional failure mechanism. This project aims to fill this gap by testing a targeted set of components subjected to combined effects of axial loads and bending with variations in axial load ratio and longitudinal reinforcement ratio. Additional experiments are planned to compare performance across other ductile concrete materials with variations in mechanical properties. The experimental results including load-deformation, reinforcement strain, concrete surface strain will be used to understand the parameters that have the highest influence on plastic hinge length and moment-rotation response which can ultimately help to validate analytical models against experiments based on these key parameters.more » « less
-
null (Ed.)Most undergraduate civil engineering programs include an introductory course in reinforced concrete design. The course generally includes an introduction to the fundamentals of reinforced concrete behavior, the design of simple beams and one-way slabs to resist shear and flexure, and the design of short columns. Because of the scale of typical civil engineering structures, students commonly do not get to experience large or full-scale structural behavior as a part of an undergraduate reinforced concrete course. Rather, students typically learn fundamental concepts through theoretical discussions, small demonstrations, or pictures and images. Without the interaction with full-scale structural members, students can struggle to develop a clear understanding of the fundamental behavior of these systems such as the differences in behavior of an over or under-reinforced beam. Additionally, students do not build an appreciation for the variations between as-built versus theoretical designs. Large-scale models can illustrate such behavior and enhance student understanding, but most civil engineering programs lack the physical equipment to perform testing at this scale. The authors from St. Louis University (SLU) and Rose-Hulman Institute of Technology (RHIT) have designed and implemented large-scale tests for in-class use that allow students to experience fundamental reinforced concrete behavior. Students design and test several reinforced concrete members using a modular strong-block testing system. This paper provides a detailed overview of the design, fabrication, and implementation of three large-scale experiential learning modules for an undergraduate reinforced concrete design course. The first module focuses on service load and deflections of a reinforced concrete beam. The first and second modules also focus on flexural failure modes and ductility. The third module focuses on shear design and failure modes. Each module uses a large scale reinforced concrete beam (Flexure specimens: 12 in. x 14 in. x 19 ft, Shear specimens: 12 in. x 14 in. x 10 ft.) that was tested on a modular strong-block testing system. The three modules were used throughout the reinforced concrete design course at SLU and RHIT to illustrate behavior concurrent to the presentation of various reinforced concrete design concepts.more » « less
-
Aaleti, Sriram; Okumus, Pinar (Ed.)Researchers have explored the high energy absorption capacity and strength of UHPC materials to improve the seismic performance of structural components. Experimental results in the literature of reinforced UHPC members have indicated superior damage tolerance, higher strength and deformation capacities, and lower potential for collapse across a range of structural components. Investigations into the underlying failure mechanisms have highlighted the significance of the synergy between material tensile strength and reinforcement properties on member flexure response. Although research into the seismic application of reinforced UHPC continues to expand, relatively little is known about the effects of varying axial load on the plastic hinge response of beam-column elements across a range of UHPC tensile properties and reinforcement levels. Therefore, in this study, the effects of varying tensile properties on beam-column elements through numerical simulations across a range of axial load ratios were investigated. Two dimensional numerical models accounting for material nonlinearities (e.g., bond-slip, UHPC tensile strength and strain capacity) were used to capture component responses. Trends in the moment-drift responses and plastic hinge lengths have highlighted the diminishing returns of using higher fiber volume percentages (2%) as higher axial loads tend to relieve tensile demands. Additionally, existing plastic hinge length expressions for RC components were found to over-predict hinge length consistently while those developed for HPFRCC components accurately predict plastic hinge lengths at low axial load levels.more » « less
An official website of the United States government

