Abstract Giant, star-forming clumps are a common feature prevalent among high-redshift star-forming galaxies and play a critical role in shaping their chaotic morphologies and yet, their nature and role in galaxy evolution remains to be fully understood. A majority of the effort to study clumps has been focused at high redshifts, and local clump studies have often suffered from small sample sizes. In this work, we present an analysis of clump properties in the local universe, and for the first time, performed with a statistically significant sample. With the help of the citizen science-powered Galaxy Zoo: Hubble project, we select a sample of 92 z < 0.06 clumpy galaxies in Sloan Digital Sky Survey Stripe 82 galaxies. Within this sample, we identify 543 clumps using a contrast-based image analysis algorithm and perform photometry as well as estimate their stellar population properties. The overall properties of our z < 0.06 clump sample are comparable to the high-redshift clumps. However, contrary to the high-redshift studies, we find no evidence of a gradient in clump ages or masses as a function of their galactocentric distances. Our results challenge the inward migration scenario for clump evolution for the local universe, potentially suggesting a larger contribution of ex situ clumps and/or longer clump migration timescales.
more »
« less
Stellar masses of clumps in gas-rich, turbulent disc galaxies
ABSTRACT In this paper, we use Hubble Space Telescope/WFC3 observations of six galaxies from the DYnamics of Newly Assembled Massive Object (DYNAMO) survey, combined with stellar population modelling of the SED, to determine the stellar masses of DYNAMO clumps. The DYNAMO sample has been shown to have properties similar to z ≈ 1.5 turbulent, clumpy discs. DYNAMO sample clump masses offer a useful comparison for studies of z > 1 in that the galaxies have the same properties, yet the observational biases are significantly different. Using DYNAMO, we can more easily probe rest-frame near-IR wavelengths and also probe finer spatial scales. We find that the stellar mass of DYNAMO clumps is typically 107−108M⊙. We employ a technique that makes non-parametric corrections in removal of light from nearby clumps, and carries out a locally determined disc subtraction. The process of disc subtraction is the dominant effect, and can alter clump masses at the 0.3 dex level. Using these masses, we investigate the stellar mass function (MF) of clumps in DYNAMO galaxies. DYNAMO stellar MFs follow a declining power law with slope α ≈ −1.4, which is slightly shallower than, but similar to what is observed in z > 1 lensed galaxies. We compare DYNAMO clump masses to results of simulations. The masses and galactocentric position of clumps in DYNAMO galaxies are more similar to long-lived clumps in simulations. Similar to recent DYNAMO results on the stellar population gradients, these results are consistent with simulations that do not employ strong ‘early’ radiative feedback prescriptions.
more »
« less
- Award ID(s):
- 2108140
- PAR ID:
- 10374287
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 512
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3079 to 3097
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We examine the nature of kpc-scale clumps seen in high-redshift galaxies using a suite of cosmological simulations of galaxy formation. We identify rest-frame UV clumps in mock HST images smoothed to 500 pc resolution, and compare them with the intrinsic 3D clumps of young stars identified in the simulations with 100 pc resolution. According to this comparison for the progenitors of Milky Way-sized galaxies probed by our simulations, we expect that the stellar masses of the observed clumps are overestimated by as much as an order of magnitude, and that the sizes of these clumps are also overestimated by factor of several, due to a combination of spatial resolution and projection. The masses of young stars contributing most of the UV emission can also be overestimated by factor of a few. We find that most clumps of young stars present in a simulation at one time dissolve on a timescale shorter than ∼150 Myr. Some clumps with dense cores can last longer but eventually disperse. Most of the clumps are not bound structures, with virial parameter αvir > 1. We find similar results for clumps identified in mock maps of H α emission measure. We examine the predictions for effective clump sizes from the linear theory of gravitational perturbations and conclude that they are inconsistent with being formed by global disc instabilities. Instead, the observed clumps represent random projections of multiple compact star-forming regions.more » « less
-
ABSTRACT We address the formation of giant clumps in violently unstable gas-rich disc galaxies at cosmic noon. While these are commonly thought to originate from gravitational Toomre instability, some cosmological simulations have indicated that clumps can form in Lagrangian proto-clump regions where the Toomre Q parameter is well above unity, which are linearly stable. Examining one of these cosmological simulations, we find that it exhibits an excess in compressive modes of turbulence with converging motions. The energy in converging motions within proto-clumps is $${\sim} 70~{{\ \rm per\ cent}}$$ of the total turbulent energy, compared to $${\sim} 17~{{\ \rm per\ cent}}$$ expected in equipartition. When averaged over the whole disc, $${\sim} 40~{{\ \rm per\ cent}}$$ of the turbulent energy is in compressive modes, mostly in converging motions, with the rest in solenoidal modes, compared to the $(1/3)-(2/3)$ division expected in equipartition. By contrast, we find that in an isolated-disc simulation with similar properties, resembling high-z star-forming galaxies, the different turbulence modes are in equipartition, both in proto-clumps and over the whole disc. We conclude that the origin of excessive converging motions in proto-clumps is external to the disc, and propose several mechanisms that can induce them. This is an additional mechanism for clump formation, complementary to and possibly preceding gravitational instability.more » « less
-
ABSTRACT We present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M⊙. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV − r) and (r − J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M*/M⊙ < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass ($$\rm M_{\ast } \gt 10^{10.5} {\rm M}_{\odot }$$) quiescent galaxies by a factor ≳ 2. However, we find that at lower masses ($$\rm M_{\ast } \lt 10^{10.5} {\rm M}_{\odot }$$), no additional environmental quenching is required.more » « less
-
null (Ed.)ABSTRACT Galaxy internal structure growth has long been accused of inhibiting star formation in disc galaxies. We investigate the potential physical connection between the growth of dispersion-supported stellar structures (e.g. classical bulges) and the position of galaxies on the star-forming main sequence at z ∼ 0. Combining the might of the SAMI and MaNGA galaxy surveys, we measure the λRe spin parameter for 3289 galaxies over $$9.5 \lt \log M_{\star } [\rm {M}_{\odot }] \lt 12$$. At all stellar masses, galaxies at the locus of the main sequence possess λRe values indicative of intrinsically flattened discs. However, above $$\log M_{\star }[\rm {M}_{\odot }]\sim 10.5$$ where the main sequence starts bending, we find tantalizing evidence for an increase in the number of galaxies with dispersion-supported structures, perhaps suggesting a connection between bulges and the bending of the main sequence. Moving above the main sequence, we see no evidence of any change in the typical spin parameter in galaxies once gravitationally interacting systems are excluded from the sample. Similarly, up to 1 dex below the main sequence, λRe remains roughly constant and only at very high stellar masses ($$\log M_{\star }[\rm {M}_{\odot }]\gt 11$$), do we see a rapid decrease in λRe once galaxies decline in star formation activity. If this trend is confirmed, it would be indicative of different quenching mechanisms acting on high- and low-mass galaxies. The results suggest that whilst a population of galaxies possessing some dispersion-supported structure is already present on the star-forming main sequence, further growth would be required after the galaxy has quenched to match the kinematic properties observed in passive galaxies at z ∼ 0.more » « less
An official website of the United States government

