skip to main content


Title: Development of MEMS Process Compatible (Bi,Sb)2(Se,Te)3-Based Thin Films for Scalable Fabrication of Planar Micro-Thermoelectric Generators
Bismuth telluride-based thin films have been investigated as the active material in flexible and micro thermoelectric generators (TEGs) for near room-temperature energy harvesting applications. The latter is a class of compact printed circuit board compatible devices conceptualized for operation at low-temperature gradients to generate power for wireless sensor nodes (WSNs), the fundamental units of the Internet-of-Things (IoT). CMOS and MEMS compatible micro-TEGs require thin films that can be integrated into the fabrication flow without compromising their thermoelectric properties. We present results on the thermoelectric properties of (Bi,Sb)2(Se,Te)3 thin films deposited via thermal evaporation of ternary compound pellets on four-inch SiO2 substrates at room temperature. Thin-film compositions and post-deposition annealing parameters are optimized to achieve power factors of 2.75 mW m−1 K−2 and 0.59 mW m−1 K−2 for p-type and n-type thin films. The measurement setup is optimized to characterize the thin-film properties accurately. Thin-film adhesion is further tested and optimized on several substrates. Successful lift-off of p-type and n-type thin films is completed on the same wafer to create thermocouple patterns as per the target device design proving compatibility with the standard MEMS fabrication process.  more » « less
Award ID(s):
2110603
NSF-PAR ID:
10374299
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Micromachines
Volume:
13
Issue:
9
ISSN:
2072-666X
Page Range / eLocation ID:
1459
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermoelectric generators (TEGs) convert temperature differences into electrical power and are attractive among energy harvesting devices due to their autonomous and silent operation. While thermoelectric materials have undergone substantial improvements in material properties, a reliable and cost-effective fabrication method suitable for microgravity and space applications remains a challenge, particularly as commercial space flight and extended crewed space missions increase in frequency. This paper demonstrates the use of plasma-jet printing (PJP), a gravity-independent, electromagnetic field-assisted printing technology, to deposit colloidal thermoelectric nanoflakes with engineered nanopores onto flexible substrates at room temperature. We observe substantial improvements in material adhesion and flexibility with less than 2% and 11% variation in performance after 10 000 bending cycles over 25 mm and 8 mm radii of curvature, respectively, as compared to previously reported TE films. Our printed films demonstrate electrical conductivity of 2.5 × 10 3 S m −1 and a power factor of 70 μW m −1 K −2 at room temperature. To our knowledge, these are the first reported values of plasma-jet printed thermoelectric nanomaterial films. This advancement in plasma jet printing significantly promotes the development of nanoengineered 2D and layered materials not only for energy harvesting but also for the development of large-scale flexible electronics and sensors for both space and commercial applications. 
    more » « less
  2. Flexible thermoelectric generators (TEGs) have shown immense potential for serving as a power source for wearable electronics and the Internet of Things. A key challenge preventing large-scale application of TEGs lies in the lack of a high-throughput processing method, which can sinter thermoelectric (TE) materials rapidly while maintaining their high thermoelectric properties. Herein, we integrate high-throughput experimentation and Bayesian optimization (BO) to accelerate the discovery of the optimum sintering conditions of silver–selenide TE films using an ultrafast intense pulsed light (flash) sintering technique. Due to the nature of the high-dimensional optimization problem of flash sintering processes, a Gaussian process regression (GPR) machine learning model is established to rapidly recommend the optimum flash sintering variables based on Bayesian expected improvement. For the first time, an ultrahigh-power factor flexible TE film (a power factor of 2205 μW m −1 K −2 with a zT of 1.1 at 300 K) is demonstrated with a sintering time less than 1.0 second, which is several orders of magnitude shorter than that of conventional thermal sintering techniques. The films also show excellent flexibility with 92% retention of the power factor (PF) after 10 3 bending cycles with a 5 mm bending radius. In addition, a wearable thermoelectric generator based on the flash-sintered films generates a very competitive power density of 0.5 mW cm −2 at a temperature difference of 10 K. This work not only shows the tremendous potential of high-performance and flexible silver–selenide TEGs but also demonstrates a machine learning-assisted flash sintering strategy that could be used for ultrafast, high-throughput and scalable processing of functional materials for a broad range of energy and electronic applications. 
    more » « less
  3. Abstract

    Thermoelectric generators are an environmentally friendly and reliable solid‐state energy conversion technology. Flexible and low‐cost thermoelectric generators are especially suited to power flexible electronics and sensors using body heat or other ambient heat sources. Bismuth telluride (Bi2Te3) based thermoelectric materials exhibit their best performance near room temperature making them an ideal candidate to power wearable electronics and sensors using body heat. In this report, Bi2Te3thin films are deposited on a flexible polyimide substrate using low‐cost and scalable manufacturing methods. The synthesized Bi2Te3nanocrystals have a thickness of 35 ± 15 nm and a lateral dimension of 692 ± 186 nm. Thin films fabricated from these nanocrystals exhibit a peak power factor of 0.35 mW m−1·K−2at 433 K, which is among the highest reported values for flexible thermoelectric films. In order to evaluate the flexibility of the thin films, static and dynamic bending tests are performed while monitoring the change in electrical resistivity. After 1000 bending cycles over a 50 mm radius of curvature, the change in electrical resistance of the film is 23%. Using Bi2Te3solutions, the ability to print thermoelectric thin films with an aerosol jet printer is demonstrated, highlighting the potential of additive manufacturing techniques for fabricating flexible thermoelectric generators.

     
    more » « less
  4. Abstract

    Flexible thermoelectric (TE) devices hold great promise for energy harvesting and cooling applications, with increasing significance to serve as perpetual power sources for flexible electronics and wearable devices. Despite unique and superior TE properties widely reported in nanocrystals, transforming these nanocrystals into flexible and functional forms remains a major challenge. Herein, demonstrated is a transformative 3D conformal aerosol jet printing and rapid photonic sintering process to print and sinter solution‐processed Bi2Te2.7Se0.3nanoplate inks onto virtually any flexible substrates. Within seconds of photonic sintering, the electrical conductivity of the printed film is dramatically improved from nonconductive to 2.7 × 104S m−1. The films demonstrate a room temperature power factor of 730 µW m−1K−2, which is among the highest values reported in flexible TE films. Additionally, the film shows negligible performance changes after 500 bending cycles. The highly scalable and low‐cost fabrication process paves the way for large‐scale manufacturing of flexible devices using a variety of high‐performing nanoparticle inks.

     
    more » « less
  5. Over the past decade, Ag 2 Se has attracted increasing attention due to its potentially excellent thermoelectric (TE) performance as an n-type semiconductor. It has been considered a promising alternative to Bi–Te alloys and other commonly used yet toxic and/or expensive TE materials. To optimize the TE performance of Ag 2 Se, recent research has focused on fabricating nanosized Ag 2 Se. However, synthesizing Ag 2 Se nanoparticles involves energy-intensive and time-consuming techniques with poor yield of final product. In this work, we report a low-cost, solution-processed approach that enables the formation of Ag 2 Se thin films from Cu 2−x Se template films via cation exchange at room temperature. Our simple two-step method involves fabricating Cu 2−x Se thin films by the thiol-amine dissolution of bulk Cu 2 Se, followed by soaking Cu 2−x Se films in AgNO 3 solution and annealing to form Ag 2 Se. We report an average power factor (PF) of 617 ± 82 μW m −1 K −2 and a corresponding ZT value of 0.35 at room temperature. We obtained a maximum PF of 825 μW m −1 K −2 and a ZT value of 0.46 at room temperature for our best-performing Ag 2 Se thin-film after soaking for 5 minutes. These high PFs have been achieved via full solution processing without hot-pressing. 
    more » « less