Ctenophores are descendants of an early branching basal metazoan lineage, which may have evolved neurons and muscles independently from other animals.
Ctenophora is an early‐branching basal metazoan lineage, which may have evolved neurons and muscles independently from other animals. However, despite the profound diversity among ctenophores, basal neuroanatomical data are limited to representatives of two genera. Here, we describe the organization of neuromuscular systems in eight ctenophore species focusing on
- NSF-PAR ID:
- 10374608
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Comparative Neurology
- Volume:
- 528
- Issue:
- 3
- ISSN:
- 0021-9967
- Page Range / eLocation ID:
- p. 481-501
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Mnemiopsis is one of the important reference ctenophore species. However, little is known about its neuromuscular organization. Here, we mapped and tracked the development of the neural and muscular elements in the early hatching cydippid larvae, as well as adult . The overall development of the neuromuscular system inMnemiopsis leidyi Mnemiopsis was very similar toPleurobrachia bachei , although inMnemiopsis the entire process occurred significantly faster. The subepithelial neural cells were observed immediately after hatching. This population consisted of a dozen of separated individual neurons with short neurites. In about 2 days, when their neurites grew significantly longer and connected to their neighbors, they began to form a canonical polygonal subepithelial network. Mesogleal neural elements prominent in all studied adult ctenophores were not detectable inMnemiopsis larvae but were clearly labeled in closely related Lobata speciesBolinopsis infundibulum . Hatched larvae also had putative mechanoreceptors with long stereocilia and approximately two dozen muscle cells. In adultMnemiopsis, the feeding lobes and auricles contained two distinct populations of neurons and neural ensembles that were not observed in other ctenophore lineages and likely represented elaborate neuronal innovations characteristic for the clade Lobata and their lifestyles. -
Abstract Although, neurosensory systems might have evolved independently in ctenophores, very little is known about their organization and functions. Most ctenophores are pelagic and deep‐water species and cannot be bred in the laboratory. Thus, it is not surprising that neuroanatomical data are available for only one genus within the group—
Pleurobrachia . Here, using immunohistochemistry and scanning electron microscopy, we describe the organization of two distinct neural subsystems (subepithelial and mesogleal) and the structure of different receptor types in the comb jelly the voracious predator from North Pacific. A complex subepithelial neural network ofBeroe abyssicola —Beroe , with five receptor types, covers the entire body surface and expands deep into the pharynx. Three types of mesogleal neurons are comparable to the cydippidPleurobrachia . The predatory lifestyle ofBeroe is supported by the extensive development of ciliated and muscular structures including the presence of giant muscles and feeding macrocilia. The obtained cell‐type atlas illustrates different examples of lineage‐specific innovations within these enigmatic marine animals and reveals the remarkable complexity of sensory and effector systems in this clade of basal Metazoa. -
Abstract Ctenophores are descendants of one of the earliest branching metazoan lineage with enigmatic nervous systems. The lack of convenient neurogenic molecules and neurotransmitters suggests an extensive parallel evolution and independent origins of neurons and synapses. However, the field lags due to the lack of microanatomical data about the neuro‐muscular systems in this group of animals. Here, using immunohistochemistry and scanning electron microscopy, we describe the organization of both muscular and nervous systems in the sea gooseberry,
from North Pacific. The diffuse neural system ofPleurobrachia bachei ,Pleurobrachia consists of two subsystems: the subepithelial neural network and the mesogleal net with about 5,000–7,000 neurons combined. Our data revealed the unexpected complexity of neuromuscular organization in this basal metazoan lineage. The anatomical diversity of cell types includes at least nine broad categories of neurons, five families of surface receptors and more than two dozen types of muscle cells as well as regional concentrations of neuronal elements to support ctenophore feeding, complex swimming, escape, and prey capture behaviors. In summary, we recognize more than 80 total morphological cell types. Thus, in terms of cell‐type specification and diversity, ctenophores significantly exceed what we currently know about other prebilaterian groups (placozoan, sponges, and cnidarians), and some basal bilaterians. -
Abstract Cnidaria is the sister taxon to bilaterian animals, and therefore, represents a key reference lineage to understand early origins and evolution of the neural systems. The hydromedusa
Aglantha digitale is arguably the best electrophysiologically studied jellyfish because of its system of giant axons and unique fast swimming/escape behaviors. Here, using a combination of scanning electron microscopy and immunohistochemistry together with phalloidin labeling, we systematically characterize both neural and muscular systems inAglantha , summarizing and expanding further the previous knowledge on the microscopic neuroanatomy of this crucial reference species. We found that the majority, if not all (~2,500) neurons, that are labeled by FMRFamide antibody are different from those revealed by anti‐α‐tubulin immunostaining, making these two neuronal markers complementary to each other and, therefore, expanding the diversity of neural elements inAglantha with two distinct neural subsystems. Our data uncovered the complex organization of neural networks forming a functional “annulus‐type” central nervous system with three subsets of giant axons, dozen subtypes of neurons, muscles, and a variety of receptors fully integrated with epithelial conductive pathways supporting swimming, escape and feeding behaviors. The observed unique adaptations within theAglantha lineage (including giant axons innervating striated muscles) strongly support an extensive and wide‐spread parallel evolution of integrative and effector systems across Metazoa. -
Ctenophores (comb jellies) are emerging as important animals for investigating fundamental questions across numerous branches of biology (e.g., evodevo, neuroscience and biogeography). A few ctenophore species including, most notably,
Mnemiopsis leidyi , are considered as invasive species, adding to the significance of studying ctenophore ecology. Despite the growing interest in ctenophore biology, relatively little is known about their reproduction. Like most ctenophores,M. leidyi is a simultaneous hermaphrodite capable of self-fertilization. In this study, we assess the influence of light on spawning, the effect of body size on spawning likelihood and reproductive output, and the cost of self-fertilization on egg viability inM. leidyi . Our results suggest thatM. leidyi spawning is more strongly influenced by circadian rhythms than specific light cues and that body size significantly impacts spawning and reproductive output.Mnemiopsis leidyi adults that spawned alone produced a lower percentage of viable embryos versus those that spawned in pairs, suggesting that self-fertilization may be costly in this species. These results provide insight into the reproductive ecology ofM. leidyi and provide a fundamental resource for researchers working with them in the laboratory.