skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Particle‐in‐Cell Simulation of Rising‐Tone Magnetosonic Waves
Abstract Recent observations have reported that magnetosonic waves can exhibit rising‐tone structures in the frequency‐time spectrogram. However, the generation mechanism has not been identified yet. In this paper, we investigate the generation of rising‐tone magnetosonic waves in the terrestrial magnetosphere using 1‐D particle‐in‐cell (PIC) simulations, in which the plasma consists of three components: cool electrons, cool protons and ring distribution protons. We find that the magnetosonic waves excited by the ring distribution protons can form a rising‐tone structure with frequency of the structure ranging from about0.5Ωlhto nearlyΩlh, whereΩlhis the lower hybrid frequency. It is further demonstrated that the rising frequency of magnetosonic waves can be accounted for by the scattering of ring distribution protons. Moreover, the rising‐tone timescale obtained by PIC simulation is compared with the satellite observation. Our findings provide some new insights to understand the nonlinear evolution of plasma waves in the Earth's magnetosphere.  more » « less
Award ID(s):
1702805
PAR ID:
10374740
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The present study uncovers the fine structures of magnetosonic waves by investigating the EFW waveforms measured by Van Allen Probes. We show that each harmonic of the magnetosonic wave may consist of a series of elementary rising‐tone emissions, implying a nonlinear mechanism for the wave generation. By investigating an elementary rising‐tone magnetosonic wave that spans a wide frequency range, we show that the frequency sweep rate is likely proportional to the wave frequency. We studied compound rising‐tone magnetosonic waves, and found that they typically consist of multiple harmonics in the source region, and may gradually become continuous in frequency as they propagate away from source. Both elementary and compound rising‐tone magnetosonic waves last for ∼1 min which is close to the bounce period of the ring proton distribution, but their relation is not fully understood. 
    more » « less
  2. Abstract We recently reported the finding of elementary rising‐tone emissions embedded within each harmonic of magnetosonic waves, by investigating wave electric field waveforms measured by Van Allen Probes. The present study further uncovers a new set of fine structures of magnetosonic waves, namely, each elementary rising‐tone may consist of a series of mini harmonics spaced around the O+gyrofrequency. The measured ion distributions suggest that the proton ring distribution provides free energy to excite the waves, whilst the O+ions suppress the wave growth around multiples of O+gyrofrequency, resulting in the formation of mini harmonics. Further investigation suggests that the warm plasma dispersion relation, that is, the ion Bernstein mode instabilities, may contribute to the formation of mini harmonics. The mini harmonic structure implies a new mechanism of energy redistribution among ion species in space plasmas, potentially providing a new acceleration mechanism for O+ions in the magnetosphere. 
    more » « less
  3. Abstract Radiation belt electrons can be accelerated and scattered by magnetosonic waves in the Earth's magnetosphere, and the scattering rate of electrons is sensitive to the wave normal angle. However, observationally it is difficult to identify the wave normal angle within a few degrees. In this study, using 2‐D particle‐in‐cell (PIC) simulations, we investigate the wave normal angle distribution of magnetosonic waves excited by ring distribution protons. Both the linear theory and simulations have shown that the wave normal angles are distributed over a narrow range (82°–89°) with a major peak at about 85° during the linear growth stage when the proton ring velocity is close to the Alfven speed. In addition, 2‐D PIC simulations further demonstrated that the waves tend to have larger wave normal angles (84°–89°) during the saturation stage since the waves with smaller wave normal angles are dissipated faster. It is also found that wave normal angles decrease with the increase of wave frequency. With the increase of the ring velocity of the proton ring distribution, the perpendicular wavenumber of excited magnetosonic waves decreases, which leads to the decrease of the wave normal angle. The simulation results provide a valuable insight to understand the property of magnetosonic waves, and the findings are useful for the global simulations of radiation belt dynamics. 
    more » « less
  4. Abstract In the inner magnetosphere, fast magnetosonic waves (MS waves) are known to resonantly interact with ring current protons, causing these protons to gain energy preferentially in the direction perpendicular to the background magnetic field. An anisotropic distribution of enhanced ring current protons is a necessary condition to excite electromagnetic ion cyclotron (EMIC) waves which are known to facilitate a rapid depletion of ultra‐relativistic electrons in the outer radiation belt. So, when a simultaneous observation of high‐frequency EMIC (HFEMIC) waves, anisotropic low‐energy protons, and MS waves was first reported, a chain of energy flow from MS waves to HFEMIC waves through proton heating was naturally proposed. In this study, we carry out a statistical analysis using Van Allen Probes data to provide deeper insights into this energy pathway. Our results show that the occurrence of HFEMIC waves exhibits good correlation with the enhanced flux and anisotropy of low‐energy protons, but the correlation between the low‐energy protons and the concurrent MS waves is rather poor. The latter result is given support by quasilinear diffusion analysis, indicating negligible momentum diffusion rates at sub‐keV energies, unless MS wave frequency gets very close to the proton cyclotron frequency (which constitutes only a small number of the cases). The fact that the first chain of the coupling is statistically inconclusive calls for an alternative explanation for the major source of the low‐energy anisotropic proton population in the inner magnetosphere. 
    more » « less
  5. Abstract This study investigates the comprehensive magnetospheric and ionospheric phenomena during a substorm event on 14 December 2013. The methodology involves analyzing data from satellites located within the plasmasphere at dusk‐side of the Earth, as well as data from ionospheric satellites mapped in the subauroral region. Magnetospheric data were analyzed to identify key features during the substorm event. Proton injection into the ring current, presence of proton and helium band electromagnetic ion cyclotron (EMIC) waves with different polarization characteristics, and harmonic structures in these EMIC waves were identified. These harmonic structures coincided with the appearance of magnetosonic waves characterized by rising tone structures and heating of low‐energy protons (<100 eV). Ionospheric satellites (DMSP F17 and POES 15) recorded enhanced proton precipitation contributing to the intensification of subauroral proton arcs. The analysis revealed that these enhanced proton fluxes were associated with variations in field‐aligned currents (FACs) and drove dynamics within the Sub‐Auroral Polarization Streams (SAPS). By combining and analyzing the magnetospheric and ionospheric data sets, this study provides a comprehensive understanding of magnetosphere‐ionosphere coupling during substorms, particularly on the duskside. The complex interdependence and causal relationships among EMIC waves, proton precipitation, subauroral proton arcs, FAC variations, and SAPS dynamics were highlighted. 
    more » « less