skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Particle‐in‐Cell Simulation of Rising‐Tone Magnetosonic Waves
Abstract Recent observations have reported that magnetosonic waves can exhibit rising‐tone structures in the frequency‐time spectrogram. However, the generation mechanism has not been identified yet. In this paper, we investigate the generation of rising‐tone magnetosonic waves in the terrestrial magnetosphere using 1‐D particle‐in‐cell (PIC) simulations, in which the plasma consists of three components: cool electrons, cool protons and ring distribution protons. We find that the magnetosonic waves excited by the ring distribution protons can form a rising‐tone structure with frequency of the structure ranging from about0.5Ωlhto nearlyΩlh, whereΩlhis the lower hybrid frequency. It is further demonstrated that the rising frequency of magnetosonic waves can be accounted for by the scattering of ring distribution protons. Moreover, the rising‐tone timescale obtained by PIC simulation is compared with the satellite observation. Our findings provide some new insights to understand the nonlinear evolution of plasma waves in the Earth's magnetosphere.  more » « less
Award ID(s):
1702805
PAR ID:
10374740
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The present study uncovers the fine structures of magnetosonic waves by investigating the EFW waveforms measured by Van Allen Probes. We show that each harmonic of the magnetosonic wave may consist of a series of elementary rising‐tone emissions, implying a nonlinear mechanism for the wave generation. By investigating an elementary rising‐tone magnetosonic wave that spans a wide frequency range, we show that the frequency sweep rate is likely proportional to the wave frequency. We studied compound rising‐tone magnetosonic waves, and found that they typically consist of multiple harmonics in the source region, and may gradually become continuous in frequency as they propagate away from source. Both elementary and compound rising‐tone magnetosonic waves last for ∼1 min which is close to the bounce period of the ring proton distribution, but their relation is not fully understood. 
    more » « less
  2. Abstract Radiation belt electrons can be accelerated and scattered by magnetosonic waves in the Earth's magnetosphere, and the scattering rate of electrons is sensitive to the wave normal angle. However, observationally it is difficult to identify the wave normal angle within a few degrees. In this study, using 2‐D particle‐in‐cell (PIC) simulations, we investigate the wave normal angle distribution of magnetosonic waves excited by ring distribution protons. Both the linear theory and simulations have shown that the wave normal angles are distributed over a narrow range (82°–89°) with a major peak at about 85° during the linear growth stage when the proton ring velocity is close to the Alfven speed. In addition, 2‐D PIC simulations further demonstrated that the waves tend to have larger wave normal angles (84°–89°) during the saturation stage since the waves with smaller wave normal angles are dissipated faster. It is also found that wave normal angles decrease with the increase of wave frequency. With the increase of the ring velocity of the proton ring distribution, the perpendicular wavenumber of excited magnetosonic waves decreases, which leads to the decrease of the wave normal angle. The simulation results provide a valuable insight to understand the property of magnetosonic waves, and the findings are useful for the global simulations of radiation belt dynamics. 
    more » « less
  3. Abstract In the inner magnetosphere, fast magnetosonic waves (MS waves) are known to resonantly interact with ring current protons, causing these protons to gain energy preferentially in the direction perpendicular to the background magnetic field. An anisotropic distribution of enhanced ring current protons is a necessary condition to excite electromagnetic ion cyclotron (EMIC) waves which are known to facilitate a rapid depletion of ultra‐relativistic electrons in the outer radiation belt. So, when a simultaneous observation of high‐frequency EMIC (HFEMIC) waves, anisotropic low‐energy protons, and MS waves was first reported, a chain of energy flow from MS waves to HFEMIC waves through proton heating was naturally proposed. In this study, we carry out a statistical analysis using Van Allen Probes data to provide deeper insights into this energy pathway. Our results show that the occurrence of HFEMIC waves exhibits good correlation with the enhanced flux and anisotropy of low‐energy protons, but the correlation between the low‐energy protons and the concurrent MS waves is rather poor. The latter result is given support by quasilinear diffusion analysis, indicating negligible momentum diffusion rates at sub‐keV energies, unless MS wave frequency gets very close to the proton cyclotron frequency (which constitutes only a small number of the cases). The fact that the first chain of the coupling is statistically inconclusive calls for an alternative explanation for the major source of the low‐energy anisotropic proton population in the inner magnetosphere. 
    more » « less
  4. Abstract This study investigates the comprehensive magnetospheric and ionospheric phenomena during a substorm event on 14 December 2013. The methodology involves analyzing data from satellites located within the plasmasphere at dusk‐side of the Earth, as well as data from ionospheric satellites mapped in the subauroral region. Magnetospheric data were analyzed to identify key features during the substorm event. Proton injection into the ring current, presence of proton and helium band electromagnetic ion cyclotron (EMIC) waves with different polarization characteristics, and harmonic structures in these EMIC waves were identified. These harmonic structures coincided with the appearance of magnetosonic waves characterized by rising tone structures and heating of low‐energy protons (<100 eV). Ionospheric satellites (DMSP F17 and POES 15) recorded enhanced proton precipitation contributing to the intensification of subauroral proton arcs. The analysis revealed that these enhanced proton fluxes were associated with variations in field‐aligned currents (FACs) and drove dynamics within the Sub‐Auroral Polarization Streams (SAPS). By combining and analyzing the magnetospheric and ionospheric data sets, this study provides a comprehensive understanding of magnetosphere‐ionosphere coupling during substorms, particularly on the duskside. The complex interdependence and causal relationships among EMIC waves, proton precipitation, subauroral proton arcs, FAC variations, and SAPS dynamics were highlighted. 
    more » « less
  5. Abstract The nature of the 3‐s ultralow frequency (ULF) wave in the Earth's foreshock region and the associated wave‐particle interaction are not yet well understood. We investigate the 3‐s ULF waves using Magnetospheric Multiscale (MMS) observations. By combining the plasma rest frame wave properties obtained from multiple methods with the instability analysis based on the velocity distribution in the linear wave stage, the ULF wave is determined to be due to the ion/ion nonresonant mode instability. The interaction between the wave and ions is analyzed using the phase relationship between the transverse wave fields and ion velocities and using the longitudinal momentum equation. During the stage when ULF waves have sinusoidal waveforms up to |dB|/|B0| ~ 3, wheredBis the wave magnetic field andB0is the background magnetic field, the wave electric fields perpendicular toB0do negative work to solar wind ions; alongB0, a longitudinal electric field develops, but theV × Bforce is stronger and leads to solar wind ion deceleration. During the same wave stage, the backstreaming beam ions gain energy from the transverse wave fields and get deceleration alongB0by the longitudinal electric field. The ULF wave leads to electron heating, preferentially in the direction perpendicular to the local magnetic field. Secondary waves are generated within the ULF waveforms, including whistler waves near half of the electron cyclotron frequency, high‐frequency electrostatic waves, and magnetosonic whistler waves. The work improves the understanding of the nature of 3‐s ULF waves and the associated wave‐particle interaction. 
    more » « less