skip to main content


Title: Representation of Leaf‐to‐Canopy Radiative Transfer Processes Improves Simulation of Far‐Red Solar‐Induced Chlorophyll Fluorescence in the Community Land Model Version 5
Abstract

Recent advances in satellite observations of solar‐induced chlorophyll fluorescence (SIF) provide a new opportunity to constrain the simulation of terrestrial gross primary productivity (GPP). Accurate representation of the processes driving SIF emission and its radiative transfer to remote sensing sensors is an essential prerequisite for data assimilation. Recently, SIF simulations have been incorporated into several land surface models, but the scaling of SIF from leaf‐level to canopy‐level is usually not well‐represented. Here, we incorporate the simulation of far‐red SIF observed at nadir into the Community Land Model version 5 (CLM5). Leaf‐level fluorescence yield was simulated by a parametric simplification of the Soil Canopy‐Observation of Photosynthesis and Energy fluxes model (SCOPE). And an efficient and accurate method based on escape probability is developed to scale SIF from leaf‐level to top‐of‐canopy while taking clumping and the radiative transfer processes into account. SIF simulated by CLM5 and SCOPE agreed well at sites except one in needleleaf forest (R2 > 0.91, root‐mean‐square error <0.19 W⋅m−2⋅sr−1⋅μm−1), and captured the day‐to‐day variation of tower‐measured SIF at temperate forest sites (R2 > 0.68). At the global scale, simulated SIF generally captured the spatial and seasonal patterns of satellite‐observed SIF. Factors including the fluorescence emission model, clumping, bidirectional effect, and leaf optical properties had considerable impacts on SIF simulation, and the discrepancies between simulate d and observed SIF varied with plant functional type. By improving the representation of radiative transfer for SIF simulation, our model allows better comparisons between simulated and observed SIF toward constraining GPP simulations.

 
more » « less
Award ID(s):
2005574 2023205
NSF-PAR ID:
10374916
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
14
Issue:
3
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf‐level ChlF was linked with canopy‐scale solar‐induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts,USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R= 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively;P < 0.0001). We developed a model to estimateGPPfrom the tower‐based measurement ofSIFand leaf‐level ChlF parameters. The estimation ofGPPfrom this model agreed well with flux tower observations ofGPP(R= 0.68;P < 0.0001), demonstrating the potential ofSIFfor modelingGPP. At the leaf scale, we found that leafFq/Fm, the fraction of absorbed photons that are used for photochemistry for a light‐adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopySIFyield (SIF/APAR,R= 0.79;P < 0.0001). We also found that canopySIFandSIF‐derivedGPP(GPPSIF) were strongly correlated to leaf‐level biochemistry and canopy structure, including chlorophyll content (R= 0.65 for canopyGPPSIFand chlorophyll content;P < 0.0001), leaf area index (LAI) (R= 0.35 for canopyGPPSIFandLAI;P < 0.0001), and normalized difference vegetation index (NDVI) (R= 0.36 for canopyGPPSIFandNDVI;P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales.

     
    more » « less
  2. null (Ed.)
    Abstract. At the leaf level, stomata control the exchange of water and carbon across the air–leaf interface. Stomatal conductance is typically modeledempirically, based on environmental conditions at the leaf surface. Recently developed stomatal optimization models show great skills at predictingcarbon and water fluxes at both the leaf and tree levels. However, how well the optimization models perform atlarger scales has not been extensively evaluated. Furthermore, stomatal models are often used with simple single-leaf representations of canopy radiative transfer (RT), such asbig-leaf models. Nevertheless, the single-leaf canopy RT schemes do not have the capability to model optical properties of the leaves nor the entirecanopy. As a result, they are unable to directly link canopy optical properties with light distribution within the canopy to remote sensing dataobserved from afar. Here, we incorporated one optimization-based and two empirical stomatal models with a comprehensive RT model in the landcomponent of a new Earth system model within CliMA, the Climate Modelling Alliance. The model allowed us to simultaneously simulate carbon and waterfluxes as well as leaf and canopy reflectance and fluorescence spectra. We tested our model by comparing our modeled carbon and water fluxes andsolar-induced chlorophyll fluorescence (SIF) to two flux tower observations (a gymnosperm forest and an angiosperm forest) and satellite SIFretrievals, respectively. All three stomatal models quantitatively predicted the carbon and water fluxes for both forests. The optimization model,in particular, showed increased skill in predicting the water flux given the lower error (ca. 14.2 % and 21.8 % improvement for thegymnosperm and angiosperm forests, respectively) and better 1:1 comparison (slope increases from ca. 0.34 to 0.91 for the gymnosperm forest andfrom ca. 0.38 to 0.62 for the angiosperm forest). Our model also predicted the SIF yield, quantitatively reproducing seasonal cycles for bothforests. We found that using stomatal optimization with a comprehensive RT model showed high accuracy in simulating land surface processes. Theever-increasing number of regional and global datasets of terrestrial plants, such as leaf area index and chlorophyll contents, will helpparameterize the land model and improve future Earth system modeling in general. 
    more » « less
  3. Abstract

    Vegetation structure and function are key design choices in terrestrial models that affect the relationship between carbon uptake and environmental drivers. Here, we investigate how representing canopy vertical structure in a terrestrial biosphere model—that is, micrometeorological, leaf area, and leaf water profiles—influences carbon uptake at five U.S. temperate deciduous forest sites in July. Specifically, we test whether the interannual variability (IAV) of gross primary productivity (GPP) responds differently to four abiotic environmental drivers—air temperature, relative humidity, incoming shortwave radiation, and soil moisture—using either a Community Land Model multilayer canopy model (CLM‐ml) or a big‐leaf model (CLM4.5/CLM5). We conclude that vertical leaf area and microclimatic profiles (temperature, humidity, and wind) do not impact GPP IAV compared to a single‐layer model when plant hydraulics is excluded. However, with a mechanistic representation of plant hydraulics there is vertically varying water stress in CLM‐ml, and the sensitivity of carbon uptake to particular climate variables changes with height, resulting in dampened canopy‐scale GPP IAV relative to CLM4.5. Dampening is due to both a reduced dependence on soil moisture and opposing climatic forcing on different leaf layers. Such dampening is not evident in the single‐layer representation of plant hydraulic water stress implemented in the recently released CLM5. Overall, both model representations of the canopy fail to accurately simulate observed GPP IAV and this may be related by their inability to capture the upper range of observed hourly GPP and diffuse light‐GPP relationships that cannot be resolved by canopy structure alone.

     
    more » « less
  4. Solar-Induced Chlorophyll Fluorescence (SIF) can provide key information about the state of photosynthesis and offers the prospect of defining remote sensing-based estimation of Gross Primary Production (GPP). There is strong theoretical support for the link between SIF and GPP and this relationship has been empirically demonstrated using ground-based, airborne, and satellite-based SIF observations, as well as modeling. However, most evaluations have been based on monthly and annual scales, yet the GPP:SIF relations can be strongly influenced by both vegetation structure and physiology. At the monthly timescales, the structural response often dominates but short-term physiological variations can strongly impact the GPP:SIF relations. Here, we test how well SIF can predict the inter-daily variation of GPP during the growing season and under stress conditions, while taking into account the local effect of sites and abiotic conditions. We compare the accuracy of GPP predictions from SIF at different timescales (half-hourly, daily, and weekly), while evaluating effect of adding environmental variables to the relationship. We utilize observations for years 2018–2019 at 31 mid-latitudes, forested, eddy covariance (EC) flux sites in North America and Europe and use TROPOMI satellite data for SIF. Our results show that SIF is a good predictor of GPP, when accounting for inter-site variation, probably due to differences in canopy structure. Seasonally averaged leaf area index, fraction of absorbed photosynthetically active radiation (fPAR) and canopy conductance provide a predictor to the site-level effect. We show that fPAR is the main factor driving errors in the linear model at high temporal resolution. Adding water stress indicators, namely canopy conductance, to a multi-linear SIF-based GPP model provides the best improvement in the model precision at the three considered timescales, showing the importance of accounting for water stress in GPP predictions, independent of the SIF signal. SIF is a promising predictor for GPP among other remote sensing variables, but more focus should be placed on including canopy structure, and water stress effects in the relationship, especially when considering intra-seasonal, and inter- and intra-daily resolutions. 
    more » « less
  5. Abstract

    Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72,p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79,p < 0.0001) except evergreen broadleaf forests (R2 = 0.16,p < 0.05) at the daily timescale. A higher slope was found for C4grasslands and croplands than for C3ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.

     
    more » « less