Abstract Particulate organic matter supports pelagic food webs, and the activity of these food webs attenuates the flux of carbon into the ocean interior. Understanding the extent to which microbial and metazoan heterotrophs influence particle dynamics is essential to describing the biological carbon pump and nutrient delivery to deep ecosystems. We present results of bulk and compound‐specific nitrogen stable isotope analyses and a Bayesian mixing model of zooplankton fecal pellets (FP), phytoplankton, and microbial detritus end‐members on size‐fractionated particulate organic matter from 10 depths in the upper 500 m of Monterey Bay, CA. Our results suggest three distinct zones of plankton‐particle interactions in Monterey Bay: primary production and grazing from 0 to 60 m, intense microbial reworking from 60 to 200 m, and inclusion into metazoan food webs below 200 m. Zooplankton FP signatures were found in a <20 μm particle size fraction, both at the approximate depth to which zooplankton migrate at night (∼25–60 m) and in the mesopelagic at the approximate depth to which zooplankton migrate during the day (∼200 m). This finding indicates that fecal pellets were rapidly disaggregated at the depth at which they were produced, which has implications for estimates of zooplankton FP contribution to carbon export and modeling efforts. In some water columns, much of zooplankton FP production may be disaggregated and entrained in the epipelagic zone, above the export depth.
more »
« less
Distinguishing zooplankton fecal pellets as a component of the biological pump using compound‐specific isotope analysis of amino acids
Abstract Zooplankton contribute a major component of the vertical flux of particulate organic matter to the ocean interior by packaging consumed food and waste into large, dense fecal pellets that sink quickly. Existing methods for quantifying the contribution of fecal pellets to particulate organic matter use either visual identification or lipid biomarkers, but these methods may exclude fecal material that is not morphologically distinct, or may include zooplankton carcasses in addition to fecal pellets. Based on results from seven pairs of wild‐caught zooplankton and their fecal pellets, we assess the ability of compound‐specific isotope analysis of amino acids (CSIA‐AA) to chemically distinguish fecal pellets as an end‐member material within particulate organic matter. Nitrogen CSIA‐AA is an improvement on previous uses of bulk stable isotope ratios, which cannot distinguish between differences in baseline isotope ratios and fractionation due to metabolic processing. We suggest that the relative trophic position of zooplankton and their fecal pellets, as calculated using CSIA‐AA, can provide a metric for estimating the dietary absorption efficiency of zooplankton. Using this metric, the zooplankton examined here had widely ranging dietary absorption efficiencies, where lower dietary absorption may equate to higher proportions of fecal packaging of undigested material. The nitrogen isotope ratios of threonine and alanine statistically distinguished the zooplankton fecal pellets from literature‐derived examples of phytoplankton, zooplankton biomass, and microbially degraded organic matter. We suggest that δ15N values of threonine and alanine could be used in mixing models to quantify the contribution of fecal pellets to particulate organic matter.
more »
« less
- PAR ID:
- 10375047
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 66
- Issue:
- 7
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 2827-2841
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Particulate organic matter settling out of the euphotic zone is a major sink for atmospheric carbon dioxide and serves as a primary food source to mesopelagic food webs. Degradation of this organic matter encompasses a suite of mechanisms that attenuate flux, including heterotrophic metabolic processes of microbes and metazoans. The relative contributions of microbial and metazoan heterotrophy to flux attenuation, however, have been difficult to determine. We present results of compound specific nitrogen isotope analysis of amino acids of sinking particles from sediment traps and size‐fractionated particles from in situ filtration between the surface and 500 m at Ocean Station Papa, collected during NASA EXPORTS (EXport Processes in the Ocean from RemoTe Sensing). With increasing depth, we observe: (1) that, based on theδ15N values of threonine, fecal pellets dominate the sinking particle flux and that attenuation of downward particle flux occurs largely via disaggregation in the upper mesopelagic; (2) an increasing trophic position of particles in the upper water column, reflecting increasing heterotrophic contributions to the nitrogen pool and the loss of particles via remineralization; and (3) increasingδ15N values of source amino acids in submicron and small (1–6μm) particles, reflecting microbial particle solubilization. We further employ a Bayesian mixing model to estimate the relative proportions of fecal pellets, phytodetritus, and microbially degraded material in particles and compare these results and our interpretations of flux attenuation mechanisms to other, independent methods used during EXPORTS.more » « less
-
Abstract Eukaryotic microalgae play critical roles in the structure and function of marine food webs. The contribution of microalgae to food webs can be tracked using compound‐specific isotope analysis of amino acids (CSIA‐AA). Previous CSIA‐AA studies have defined eukaryotic microalgae as a single functional group in food web mixing models, despite their vast taxonomic and ecological diversity. Using controlled cultures, this work characterizes the amino acidδ13C (δ13CAA) fingerprints—a multivariate metric of amino acid carbon isotope values—of four major groups of eukaryotic microalgae: diatoms, dinoflagellates, raphidophytes, and prasinophytes. We found excellent separation of essential amino acidδ13C (δ13CEAA) fingerprints among four microalgal groups (mean posterior probability reclassification of 99.2 ± 2.9%). We also quantified temperature effects, a primary driver of microalgal bulk carbon isotope variability, on the fidelity ofδ13CAAfingerprints. A 10°C range in temperature conditions did not have significant impacts on variance inδ13CAAvalues or the diagnostic microalgalδ13CEAAfingerprints. Theseδ13CEAAfingerprints were used to identify primary producers at the base of food webs supporting consumers in two contrasting systems: (1) penguins feeding in a diatom‐based food web and (2) mixotrophic corals receiving amino acids directly from autotrophic endosymbiotic dinoflagellates and indirectly from water column diatoms, prasinophytes, and cyanobacteria, likely via heterotrophic feeding on zooplankton. The increased taxonomic specificity of CSIA‐AA fingerprints developed here will greatly improve future efforts to reconstruct the contribution of diverse eukaryotic microalgae to the sources and cycling of organic matter in food web dynamics and biogeochemical cycling studies.more » « less
-
Abstract Gelatinous zooplankton are increasingly recognized as key components of pelagic ecosystems, and there have been many recent insights into their ecology and roles in food webs. To examine the trophic ecology of siphonophores (Cnidaria, Hydrozoa), we used bulk (carbon and nitrogen) and compound‐specific (nitrogen) isotope analysis of individual amino acids (CSIA‐AA). We collected samples of 15 siphonophore genera using blue‐water diving, midwater trawls, and remotely operated vehicles in the California Current Ecosystem, from 0 to 3000 m. We examined the basal resources supporting siphonophore nutrition by comparing their isotope values to those of contemporaneously collected sinking and suspended particles (0–500 m). Stable isotope values provided novel insights into siphonophore trophic ecology, indicating considerable niche overlap between calycophoran and physonect siphonophores. However, there were clear relationships between siphonophore trophic positions and phylogeny, and the highest siphonophore trophic positions were restricted to physonects. Bulk and source amino acid nitrogen isotope (δ15N) values of siphonophores and suspended particles all increased significantly with increasing collection depth. In contrast, siphonophore trophic positions did not increase with increasing collection depth. This suggests that microbially reworked, deep, suspended particles with higher δ15N values than surface particles, likely indirectly support deep‐pelagic siphonophores. Siphonophores feed upon a range of prey, from small crustaceans to fishes, and we show that their measured trophic positions reflect this trophic diversity, spanning 1.5 trophic levels (range 2.4–4.0). Further, we demonstrate that CSIA‐AA can elucidate the feeding ecology of gelatinous zooplankton and distinguish between nutritional resources across vertical habitats. These findings improve our understanding of the functional roles of gelatinous zooplankton and energy flow through pelagic food webs.more » « less
-
Midwater zooplankton are major agents of biogeochemical transformation in the open ocean; however their characteristics and activity remain poorly known. Here we evaluate midwater zooplankton biomass, amino acid (AA)-specific stable isotope composition (δ15N values) using compound-specific isotope analysis of amino acids (CSIA-AA), trophic position, and elemental composition in the North Pacific Subtropical Gyre (NPSG). We focus on zooplankton collected in the winter, spring, and summer to evaluate midwater trophic dynamics over a seasonal cycle. For the first time we find that midwater zooplankton respond strongly to seasonal changes in production and export in the NPSG. In summer, when export from the euphotic zone is elevated and this ‘summer pulse’ material is transported rapidly to depth, CSIA-AA indicates that large particles (> 53 μm) dominate the food web base for zooplankton throughout the midwaters, and to a large extent even into the upper bathypelagic zone. In winter, when export is low, zooplankton in the mid-mesopelagic zone continue to rely on large particle basal resources, but resident zooplankton in the lower mesopelagic and upper bathypelagic zones switch to include smaller particles (0.7–53 μm) in their food web base, or even a subset of the small particle pool. Midwater zooplankton migration patterns also vary with season, with migrants distributed more evenly at night through the euphotic zone in summer as compared to being more compressed in the upper mixed layer in winter. Deeper zooplankton migration within the mesopelagic zone is also reduced in late summer, likely due to the increased magnitude of large particle material available at depth during this season. Our observed seasonal change in activity and trophic dynamics drives modestly greater biomass in summer than winter through the mesopelagic zone. In contrast midwater zooplankton carbon (C), nitrogen (N), and phosphorus (P) composition does not change with season. Instead we find increasing C:N, C:P, and N:P ratios with greater depths, likely due to decreases in proteinaceous structures and organic P compounds and increases in storage lipids with depth. Our study highlights the importance and diversity of feeding strategies for small zooplankton in NPSG midwaters. Many small zooplankton, such as oncaeid and oithonid copepods, are able to access small particle resources at depth and may be an important trophic link between the microbial loop and deep dwelling micronekton species that also rely on small particle-based food webs. Our observed midwater zooplankton trophic response to export-driven variation in the particle field at depth has important implications for midwater metabolism and the export of C to the deep sea.more » « less
An official website of the United States government
