The importance of ElectroMagnetic Ion Cyclotron (EMIC) ultra-low-frequency (ULF) waves (and their Pc1 counterparts) is connected to their critical role in triggering energetic particle precipitation from the magnetosphere to the conjugated ionosphere via pitch angle scattering. In addition, as a prominent element of the ULF zoo, EMIC/Pc1 waves can be considered a perfect tool for the remote diagnosis of the topologies and dynamic properties of near-Earth plasmas. Based on the availability of a comprehensive set of instruments, operating on the ground and in the top-side ionosphere, the present case study provides an interesting example of the evolution of EMIC propagation to both ionospheric hemispheres up to the polar cap. Specifically, we report observations of Pc1 waves detected on 30 March 2021 under low Kp, low Sym-H, and moderate AE conditions. The proposed investigation shows that high-latitude ground magnetometers in both hemispheres and the first China Seismo-Electromagnetic Satellite (CSES-01) at a Low Earth Orbit (LEO) detected in-synch Pc1 waves. In strict correspondence to this, energetic proton precipitation was observed at LEO with a simultaneous appearance of an isolated proton aurora at subauroral latitudes. This supports the idea of EMIC wave-induced proton precipitation contributing to energy transfer from the magnetosphere to the ionosphere. 
                        more » 
                        « less   
                    
                            
                            Isolated Proton Aurora Driven by EMIC Pc1 Wave: PWING, Swarm, and NOAA POES Multi‐Instrument Observations
                        
                    
    
            Abstract We report the concurrent observations of F‐region plasma changes and field‐aligned currents (FACs) above isolated proton auroras (IPAs) associated with electromagnetic ion cyclotron Pc1 waves. Key events on March 19, 2020 and September 12, 2018 show that ground magnetometers and all‐sky imagers detected concurrent Pc1 wave and IPA, during which NOAA POES observed precipitating energetic protons. In the ionospheric F‐layer above the IPA zone, the Swarm satellites observed transverse Pc1 waves, which span wider latitudes than IPA. Around IPA, Swarm also detected the bipolar FAC and localized plasma density enhancement, which is occasionally surrounded by wide/shallow depletion. This indicates that wave‐induced proton precipitation contributes to the energy transfer from the magnetosphere to the ionosphere. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1928883
- PAR ID:
- 10375096
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 18
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Foreshock transient (FT) events are frequently observed phenomena that are generated by discontinuities in the solar wind. These transient events are known to trigger global‐scale magnetic field perturbations (e.g., ULF waves). We report a series of FT events observed by the Magnetospheric Multiscale mission in the upstream bow shock region under quiet solar wind conditions. During the event, ground magnetometers observed significant Pc1 wave activity as well as magnetic impulse events in both hemispheres. Ground Pc1 wave observations show ∼8 min time delay (with some time differences) from each FT event which is observed at the bow shock. We also find that the ground Pc1 waves are observed earlier in the northern hemisphere compared to the southern hemisphere. The observation time difference between the hemispheres implies that the source region of the wave is the off‐equatorial region.more » « less
- 
            Abstract Mid‐latitude auroras are conventionally generated during intense magnetic storms. However, mid‐latitude auroras were observed by naked eyes at Beijing China (39°N, 116°E) unusually during a moderate storm event on 1 December 2023 with the minimum Sym‐H index only −120 nT. This study combines conjugative in‐site and ground‐based observations to analyze the auroras and underlying physical processes. Results indicate that both electron and proton auroras appeared at low latitudes. Electron auroras predominantly arise from low‐energy electron precipitation, but proton auroras may be explained by energetic tens of keV proton precipitation. Pc1/EMIC waves are observed at low latitudes in the ionosphere, potentially accounting for mid‐latitude proton auroras. Downward field‐aligned currents (FACs) are also detected at low latitudes, producing significant magnetic perturbations. This study reveals the underlying ionospheric responses to the mid‐latitude auroras to understand potential reasons for observing aurora at such mid‐latitudes during a moderate storm.more » « less
- 
            Abstract This paper investigates the local and global ionospheric responses to the 2022 Tonga volcano eruption, using ground‐based Global Navigation Satellite System total electron content (TEC), Swarm in situ plasma density measurements, the Ionospheric Connection Explorer (ICON) Ion Velocity Meter (IVM) data, and ionosonde measurements. The main results are as follows: (a) A significant local ionospheric hole of more than 10 TECU depletion was observed near the epicenter ∼45 min after the eruption, comprising of several cascading TEC decreases and quasi‐periodic oscillations. Such a deep local plasma hole was also observed by space‐borne in situ measurements, with an estimated horizontal radius of 10–15° and persisted for more than 10 hr in ICON‐IVM ion density profiles until local sunrise. (b) Pronounced post‐volcanic evening equatorial plasma bubbles (EPBs) were continuously observed across the wide Asia‐Oceania area after the arrival of volcano‐induced waves; these caused aNedecrease of 2–3 orders of magnitude at Swarm/ICON altitude between 450 and 575 km, covered wide longitudinal ranges of more than 140°, and lasted around 12 hr. (c) Various acoustic‐gravity wave modes due to volcano eruption were observed by accurate Beidou geostationary orbit (GEO) TEC, and the huge ionospheric hole was mainly caused by intense shock‐acoustic impulses. TEC rate of change index revealed globally propagating ionospheric disturbances at a prevailing Lamb‐wave mode of ∼315 m/s; the large‐scale EPBs could be seeded by acoustic‐gravity resonance and coupling to less‐damped Lamb waves, under a favorable condition of volcano‐induced enhancement of dusktime plasma upward E×B drift and postsunset rise of the equatorial ionospheric F‐layer.more » « less
- 
            Abstract We present the first observations of electrostatic solitary waves with electrostatic potential of negative polarity around a fast plasma flow in the Earth's plasma sheet. The solitary waves are observed aboard four Magnetospheric Multiscale spacecraft, which allowed accurately estimating solitary wave properties. Based on a data set of 153 solitary waves, we show that they are locally one‐dimensional Debye‐scale structures with amplitudes up to 20% of local electron temperature and they propagate at plasma frame speeds ranging from a tenth to a few ion‐acoustic speeds at arbitrary angles to the local magnetic field. The solitary waves are associated with multi‐component proton distributions and their velocities are around those of a beam‐like proton population. We argue that the solitary waves are ion holes, nonlinear structures produced by ion‐streaming instabilities, and conclude that once ions are not magnetized, ion holes can propagate oblique to local magnetic field.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
