skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Importance of Regional‐Scale Auroral Precipitation and Electrical Field Variability to the Storm‐Time Thermospheric Temperature Enhancement and Inversion Layer (TTEIL) in the Antarctic E Region
Abstract A dramatic thermospheric temperature enhancement and inversion layer (TTEIL) was observed by the Fe Boltzmann lidar at McMurdo, Antarctica during a geomagnetic storm (Chu et al. 2011,https://doi.org/10.1029/2011GL050016). The Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) driven by empirical auroral precipitation and background electric fields cannot adequately reproduce the TTEIL. We incorporate the Defense Meteorological Satellite Program (DMSP)/Special Sensor Ultraviolet Spectrographic Imager (SSUSI) auroral precipitation maps, which capture the regional‐scale features into TIEGCM and add subgrid electric field variability in the regions with strong auroral activity. These modifications enable the simulation of neutral temperatures closer to lidar observations and neutral densities closer to GRACE satellite observations (~475 km). The regional scale auroral precipitation and electric field variabilities are both needed to generate strong Joule heating that peaks around 120 km. The resulting temperature increase leads to the change of pressure gradients, thus inducing a horizontal divergence of air flow and large upward winds that increase with altitude. Associated with the upwelling wind is the adiabatic cooling gradually increasing with altitude and peaking at ~200 km. The intense Joule heating around 120 km and strong cooling above result in differential heating that produces a sharp TTEIL. However, vertical heat advection broadens the TTEIL and raises the temperature peak from ~120 to ~150 km, causing simulations deviating from observations. Strong local Joule heating also excites traveling atmospheric disturbances that carry the TTEIL signatures to other regions. Our study suggests the importance of including fine‐structure auroral precipitation and subgrid electric field variability in the modeling of storm‐time ionosphere‐thermosphere responses.  more » « less
Award ID(s):
1753214 1443726 1246405
PAR ID:
10375538
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Joule heating is a major energy sink in the solar wind‐magnetosphere‐ionosphere system and modeling it is key to understanding the impact of space weather on the neutral atmosphere. Ion drifts and neutral wind velocities are key parameters when modeling Joule heating, however there is limited validation of the modeled ion and neutral velocities at mid‐latitudes. We use the Blackstone Super Dual Auroral Radar Network radar and the Michigan North American Thermosphere Ionosphere Observing Network Fabry‐Perot interferometer to obtain the local nightside ion and neutral velocities at ∼40° geographic latitude during the nighttime of 16 July 2014. Despite being a geomagnetically quiet period, we observe significant sub‐auroral ion flows in excess of 200 ms−1. We calculate an enhancement to the local Joule heating rate due to these ion flows and find that the neutrals impart a significant increase or decrease to the total Joule heating rate of >75% depending on their direction. We compare our observations to outputs from the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM). At such a low geomagnetic activity however, TIEGCM was not able to model significant sub‐auroral ion flows and any resulting Joule heating enhancements equivalent to our observations. We found that the neutral winds were the primary contributor to the Joule heating rates modeled by TIEGCM rather than the ions as suggested by our observations. 
    more » « less
  2. Abstract Mesoscale high‐latitude electric fields are known to deposit energy into the ionospheric and thermospheric system, yet the energy deposition process is not fully understood. We conduct a case study to quantify the energy deposition from mesoscale high‐latitude electric fields to the thermosphere. For the investigation, we obtain the high‐latitude electric field with mesoscale variabilities from Poker Flat Incoherent Scatter Radar measurements during a moderate geomagnetic storm, providing the driver for the Global Ionosphere and Thermosphere Model (GITM) via the High‐latitude Input for Mesoscale Electrodynamics framework. The HIME‐GITM simulation is compared with GITM simulations driven by the large‐scale electric field from the Weimer model. Our modeling results indicate that the mesoscale electric field modifies the thermospheric energy budget primarily through enhancing the Joule heating. Specifically, in the local high‐latitude region of interest, the mesoscale electric field enhances the Joule heating by up to five times. The resulting neutral temperature enhancement can reach up to 50 K above 200 km altitude. Significant increase in the neutral density above 250 km altitude and in the neutral wind speed are found in the local region as well, lagging a few minutes after the Joule heating enhancement. We demonstrate that the energy deposited by the mesoscale electric field transfers primarily to the gravitational potential energy in the thermosphere. 
    more » « less
  3. Abstract The upper boundary height of the traditional community general circulation model of the ionosphere‐thermosphere system is too low to be applied to the topside ionosphere/thermosphere study. In this study, the National Center for Atmospheric Research Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (NCAR‐TIEGCM) was successfully extended upward by four scale heights from 400–600 km to 700–1,200 km depending on solar activity, named TIEGCM‐X. The topside ionosphere and thermosphere simulated by TIEGCM‐X agree well with the observations derived from a topside sounder and satellite drag data. In addition, the neutral density, temperature, and electron density simulated by TIEGCM‐X are morphologically consistent with the NCAR‐TIEGCM simulations before extension. The latitude‐altitude distribution of the equatorial ionization anomaly derived from TIEGCM‐X is more reasonable. During geomagnetic storm events, the thermospheric responses of TIEGCM‐X are similar to NCAR‐TIEGCM. However, the ionospheric storm effects in TIEGCM‐X are stronger than those in NCAR‐TIEGCM and are even opposites at some middle and low latitudes due to the presence of more closed magnetic field lines. Defense Meteorological Satellite Program observations prove that the ionospheric storm effect of TIEGCM‐X is more reasonable. The well‐validated TIEGCM‐X has significant potential applications in ionospheric/thermospheric studies, such as the responses to storms, low‐latitude dynamics, and data assimilation. 
    more » « less
  4. Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times. 
    more » « less
  5. Abstract Nitric oxide (NO) emission via 5.3 µm wavelength plays dominant role in regulating the thermospheric temperature due to thermostat nature. The response of NO 5.3 mm emission to the negative pressure impulse during November 06–09, 2010 is studied by using Sounding of Atmosphere by Broadband Emission Radiometry (SABER) observations onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite and model simulations. The TIMED/SABER satellite observations demonstrate a significant enhancement in the high latitude region. The Open Geospace General Circulation Model (OpenGGCM), Weimer model simulations and Active Magnetosphere and Planetary Electrodynamics Response Experiment measurements exhibit intensification and equatorward expansion of the field-aligned-currents (FACs) post-negative pressure impulse period due to the expansion of the dayside magnetosphere. The enhanced FACs drive precipitation of low energy particle flux and Joule heating rate affecting whole magnetosphere–ionosphere–thermosphere system. Our study based on electric fields and conductivity derived from the EISCAT Troms$${\o }$$ ø radar and TIEGCM simulation suggests that the enhanced Joule heating rate and the particle precipitations prompt the increase in NO cooling emission. 
    more » « less