skip to main content


Title: Exchange controlled triplet fusion in metal–organic frameworks
Abstract

Triplet-fusion-based photon upconversion holds promise for a wide range of applications, from photovoltaics to bioimaging. The efficiency of triplet fusion, however, is fundamentally limited in conventional molecular and polymeric systems by its spin dependence. Here, we show that the inherent tailorability of metal–organic frameworks (MOFs), combined with their highly porous but ordered structure, minimizes intertriplet exchange coupling and engineers effective spin mixing between singlet and quintet triplet–triplet pair states. We demonstrate singlet–quintet coupling in a pyrene-based MOF, NU-1000. An anomalous magnetic field effect is observed from NU-1000 corresponding to an induced resonance between singlet and quintet states that yields an increased fusion rate at room temperature under a relatively low applied magnetic field of 0.14 T. Our results suggest that MOFs offer particular promise for engineering the spin dynamics of multiexcitonic processes and improving their upconversion performance.

 
more » « less
Award ID(s):
2105495
NSF-PAR ID:
10375859
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Materials
Volume:
21
Issue:
11
ISSN:
1476-1122
Page Range / eLocation ID:
p. 1275-1281
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Hybrid materials comprised of inorganic quantum dots functionalized with small-molecule organic chromophores have emerged as promising materials for reshaping light's energy content. Quantum dots in these structures can serve as light harvesting antennas that absorb photons and pass their energy to molecules bound to their surface in the form of spin-triplet excitons. Energy passed in this manner can fuel upconversion schemes that use triplet fusion to convert infrared light into visible emission. Likewise, triplet excitons passed in the opposite direction, from molecules to quantum dots, can enable solar cells that use singlet fission to circumvent the Shockley–Queisser limit. Silicon QDs represent a key target for these hybrid materials due to silicon's biocompatibility and preeminence within the solar energy market. However, while triplet transfer from silicon QDs to molecules has been observed, no reports to date have shown evidence of energy moving in the reverse direction. Here, we address this gap by creating silicon QDs functionalized with perylene chromophores that exhibit bidirectional triplet exciton transfer. Using transient absorption, we find triplet transfer from silicon to perylene takes place over 4.2 μs while energy transfer in the reverse direction occurs two orders of magnitude faster, on a 22 ns timescale. To demonstrate this system's utility, we use it to create a photon upconversion system that generates blue emission at 475 nm using photons with wavelengths as long as 730 nm. Our work shows formation of covalent linkages between silicon and organic molecules can provide sufficient electronic coupling to allow efficient bidirectional triplet exchange, enabling new technologies for photon conversion. 
    more » « less
  2. The strong spin–orbit coupling (SOC) in lead halide perovskites, when inversion symmetry is lifted, has provided opportunities for investigating the Rashba effect in these systems. Moreover, the strong orbital moment, which, in turn, impacts the spin-pair in singlet and triplet electronic states, plays a significant role in enhancing the optoelectronic properties in the presence of external magnetic fields in lead halide perovskites. Here, we investigate the effect of weak magnetic fields (<1 T) on the photoluminescence (PL) properties of [Formula: see text] nanocrystals with and without Ruddlesden–Popper (RP) faults and single crystals of [Formula: see text]. Along with an enhancement in the PL intensity as a function of an external magnetic field, which is observed in both lead bromide perovskites, the PL emission red-shifts in [Formula: see text] nanocrystals. Density-functional theory calculations of the electronic band-edge in [Formula: see text] show almost no change in the energy gap as a function of the external magnetic field. The experimental results, thus, suggest the role of mixing of the triplet and singlet excitonic states under weak magnetic fields. This is further deduced from an enhancement in PL lifetimes as a function of the field in [Formula: see text]. In [Formula: see text], an increase in PL intensity is observed under weak magnetic fields; however, no changes in the peak energy or PL lifetimes are observed. The internal magnetic fields due to SOC are characterized for all three samples and found to be the highest for [Formula: see text] nanocrystals with RP faults.

     
    more » « less
  3. The efficiency of solar cells may be increased by utilizing photons with energies below the band gap of the absorber. This may be enabled by upconversion of low energy photons into high energy photons via triplet–triplet annihilation (TTA) in organic chromophores. The quantum yield of TTA is often low due to competing processes. The singlet pathway, where a high energy photon is emitted, is one of three possible outcomes of an encounter between two triplet excitons. The quintet pathway is often too high in energy to be accessible, leaving the triplet pathway as the main competing process. Using many-body perturbation theory in the GW approximation and the Bethe–Salpeter equation, we calculate the energy release in both the singlet and triplet pathways for 59 chromophores of different chemical families. We find that in most cases the triplet pathway is open and has a larger energy release than the singlet pathway. Thus, the energetics perspective explains why there are so few TTA emitters and why the quantum yield of TTA is typically low. That said, our results also indicate that the performance of emitters from known chemical families may be improved by chemical modifications, such as functionalization with side groups, and that new chemical families could be explored to discover more TTA emitters. 
    more » « less
  4. null (Ed.)
    By coupling a newly developed quantum-electronic-state-selected supersonically cooled vanadium cation (V + ) beam source with a double quadrupole-double octopole (DQDO) ion–molecule reaction apparatus, we have investigated detailed absolute integral cross sections ( σ 's) for the reactions, V + [a 5 D J ( J = 0, 2), a 5 F J ( J = 1, 2), and a 3 F J ( J = 2, 3)] + CH 4 , covering the center-of-mass collision energy range of E cm = 0.1–10.0 eV. Three product channels, VH + + CH 3 , VCH 2 + + H 2 , and VCH 3 + + H, are unambiguously identified based on E cm -threshold measurements. No J -dependences for the σ curves ( σ versus E cm plots) of individual electronic states are discernible, which may indicate that the spin–orbit coupling is weak and has little effect on chemical reactivity. For all three product channels, the maximum σ values for the triplet a 3 F J state [ σ (a 3 F J )] are found to be more than ten times larger than those for the quintet σ (a 5 D J ) and σ (a 5 F J ) states, showing that a reaction mechanism favoring the conservation of total electron spin. Without performing a detailed theoretical study, we have tentatively interpreted that a weak quintet-to-triplet spin crossing is operative for the activation reaction. The σ (a 5 D 0 , a 5 F 1 , and a 3 F 2) measurements for the VH + , VCH 2 + , and VCH 3 + product ion channels along with accounting of the kinetic energy distribution due to the thermal broadening effect for CH 4 have allowed the determination of the 0 K bond dissociation energies: D 0 (V + –H) = 2.02 (0.05) eV, D 0 (V + –CH 2 ) = 3.40 (0.07) eV, and D 0 (V + –CH 3 ) = 2.07 (0.09) eV. Detailed branching ratios of product ion channels for the titled reaction have also been reported. Excellent simulations of the σ curves obtained previously for V + generated by surface ionization at 1800–2200 K can be achieved by the linear combination of the σ (a 5 D J , a 5 F J , and a 3 F J ) curves weighted by the corresponding Boltzmann populations of the electronic states. In addition to serving as a strong validation of the thermal equilibrium assumption for the populations of the V + electronic states in the hot filament ionization source, the agreement between these results also confirmed that the V + (a 5 D J , a 5 F J , and a 3 F J ) states prepared in this experiment are in single spin–orbit states with 100% purity. 
    more » « less
  5. Abstract

    Experimental studies to reveal the cooperative relationship between spin, energy, and polarization through intermolecular charge‐transfer dipoles to harvest nonradiative triplets into radiative singlets in exciplex light‐emitting diodes are reported. Magneto‐photoluminescence studies reveal that the triplet‐to‐singlet conversion in exciplexes involves an artificially generated spin‐orbital coupling (SOC). The photoinduced electron parametric resonance measurements indicate that the intermolecular charge‐transfer occurs with forming electric dipoles (D+•→A−•), providing the ionic polarization to generate SOC in exciplexes. By having different singlet‐triplet energy differences (ΔEST) in 9,9′‐diphenyl‐9H,9′H‐3,3′‐bicarbazole (BCzPh):3′,3′″,3′″″‐(1,3,5‐triazine‐2,4,6‐triyl)tris(([1,1′‐biphenyl]‐3‐carbonitrile)) (CN‐T2T) (ΔEST= 30 meV) and BCzPh:bis‐4,6‐(3,5‐di‐3‐pyridylphenyl)‐2‐methyl‐pyrimidine (B3PYMPM) (ΔEST= 130 meV) exciplexes, the SOC generated by the intermolecular charge‐transfer states shows large and small values (reflected by different internal magnetic parameters: 274 vs 17 mT) with high and low external quantum efficiency maximum, EQEmax(21.05% vs 4.89%), respectively. To further explore the cooperative relationship of spin, energy, and polarization parameters, different photoluminescence wavelengths are selected to concurrently change SOC, ΔEST, and polarization while monitoring delayed fluorescence. When the electron clouds become more deformed at a longer emitting wavelength due to reduced dipole (D+•→A−•) size, enhanced SOC, increased orbital polarization, and decreased ΔESTcan simultaneously occur to cooperatively operate the triplet‐to‐singlet conversion.

     
    more » « less