skip to main content


Title: “They Helped Me to Get Through”: Investigating Institutional Sources of Support at Two-Year Colleges that Facilitate the Transfer and Persistence of Black Engineering Students
Introduction:

While a considerable amount of extant scholarship describes the importance of and strategies for improving the postsecondary pathways of Black engineering students, most literature is contextualized within 4-year institutions.

Objectives:

The purpose of this article is to illuminate Black engineering students’ experiences at community colleges in order to understand ways in which they engage different types of 2-year institutional support.

Methods:

We draw from data obtained through a series of focus groups and interviews facilitated between fall 2018 and fall 2019 with 13 engineering undergraduates.

Results:

Findings include evidence of important connections with faculty at 2-year colleges, such as positive engagement with them inside the classroom, as well as during office hours and general advising. In addition, we describe support from academic advisors regarding transfer pathways, as well as from campus staff who helped identify scholarships or other valuable resources on campus.

Conclusion:

We offer implications and conclusions that highlight the tremendous capacity of community colleges to support and educate future Black engineers. We also discuss the significance of underrepresented students of color working closely with faculty, adding that research to date notes that these interactions often tenuous for underrepresented racial and ethnic minorities. Finally, we discuss ways in which our results can inform the broader landscape of undergraduate engineering education, which—like other STEM fields—has often created unwelcoming and competitive environments that lead to student attrition for students from all demographic backgrounds.

 
more » « less
Award ID(s):
2024081
NSF-PAR ID:
10375990
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Community College Review
Volume:
51
Issue:
1
ISSN:
0091-5521
Page Range / eLocation ID:
p. 103-127
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A combination of strategies was implemented to reduce barriers to transfer from associate to baccalaureate programs, and baccalaureate degree completion. These strategies include creation of the STEM Transfer Collaborative (STC). an adaption of the CUNY Pathways articulation initiative. Components of the STC include articulation agreements, shared professional development to align pedagogy and curriculum, outreach and collaboration by both the sending and receiving college faculty to begin transfer preparation and support before transfer occurs, and regular updates to community college faculty on the success of their transfer students. The second strategy employed is Momentum to the Baccalaureate (MB), an adaption of the CUNY Accelerated Study in Associate Programs (ASAP). MB provides support for junior and senior-level transfer students who are either community colleges associate degree graduates (external transfer) or associate degree graduates who transferred to bachelor’s programs at the same comprehensive college they earned their associate degree at, which has a 2+2 degree structure (internal transfer). Components of MB include personalized mentoring, advisement, and monthly stipends to students who maintain full-time enrollment and good academic standing. Participating majors include computer engineering technology, computer systems technology, construction management and civil engineering technology, electrical engineering technology, and applied chemistry. Propensity matching was used to evaluate the effectiveness of these strategies. Participating campuses are part of the City University of New York (CUNY), and include six community colleges (Borough of Manhattan Community College, Bronx Community College, Guttman Community College, Hostos Community College, Kingsborough Community College, and LaGuardia Community College), five of which are Hispanic Serving Institutions (HSIs), and New York City College of Technology (City Tech), also an HSI, which offers associate and bachelor’s programs (2+2 structure). Our first cohort of 40 students started upper-level studies in fall 2019, and has completed 2 years (four semesters) of post-associate degree study. The second cohort of 40 students, started in fall 2020, and has completed one year (two semesters) of post-associate degree study. Cohort 1 students receiving MB, supports had a significantly higher graduation rate after two years than the college average. Additionally, for cohort 1, the STC seems to have reduced “transfer shock,” the typical drop in GPA the first semester after transfer. There was no statistical difference in GPA, credits completed and semester-to-semester persistence of internal and external transfers in the MB program. Cohort 1 external transfer students who received support though MB also had a statistically significant improvement in their semester GPAs for their first 3 semesters at City Tech compared to matched students who were not provided support in the junior and senior years. There was no statistically significant difference by the 4th semester. Cohort 2 internal transfers receiving MB supports in their junior year had a statistically significant improvement in credits earned and persistence compared to a matched cohort without MB supports. There was no statistically significant improvement of external transfers compared to a matched cohort, who did not receive MB supports The inability of external transfer students to come to campus due to the pandemic, may have negated the sense of community and belonging that MB was intended to create. Overall, these preliminary results suggest that targeted pre-transfer and post-transfer supports improve transfer student outcomes. This project (NSF grant #1832457) was funded through the NSF Division of Education, Improving Undergraduate STEM Education: Hispanic-Serving Institutions Program. 
    more » « less
  2. Our transformative mixed-methods project, funded by the Division of Engineering Education and Centers, responds to calls for more cross-institutional qualitative and longitudinal studies of minorities in engineering education. We seek to identify the factors that promote persistence and graduation as well as attrition for Black students in Electrical Engineering (EE), Computer Engineering (CpE), and Mechanical Engineering (ME). Our work combines quantitative exploration and qualitative interviews to better understand the nuanced and complex nature of retention and attrition in these fields. We are investigating the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what ways do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? In this paper, we report on the results from 79 in-depth interviews with students at Predominantly White Institutions (PWIs) and a Historically Black University (HBCU [or HBU]). We describe emergent findings during Year 3 of our project, with a focus on four papers-in-progress: • Paper # 1: Our project utilized several innovative strategies for collecting narratives from our 79 interviewees. In particular, we developed a card-sorting activity to learn more about students’ reasons for choosing their engineering major. We have explored a variety of ways to analyze the data that illustrate the value of this type of data collection strategy and which will be of value to other researchers interested in decision making where there is a potentially complex set of factors, such as those found in deciding on a major. • Paper # 2: We summarized student responses to a pre-interview climate survey about three domains – Teaching and Learning, Faculty and Peer Interactions, and Belonging and Commitment. We investigated two questions: Are there differences between persisters and switchers? And, are there differences by study major? Results indicate substantial differences between persisters and switchers and some differences between ME and ECE students. • Paper # 3: Preliminary analysis of interviews of 10 HBCU Black students and 10 PWI Black students revealed that students enact several different types of community cultural wealth, particularly family, navigational, aspirational, social and resistant capital. Early results suggest that the HBCU students enacted a different form of family capital that resided in their “HBCU family” and the opportunities that their college-based networks afforded them to succeed in the major. PWI students described various forms of navigational capital and assets that were enacted in order to succeed at their study institutions. Our paper concludes with implications for university policies and practices aimed toward underrepresented students. 
    more » « less
  3. In January 2020 East Carolina University (ECU) in partnership with Lenoir Community College (LCC), Pitt Community College (PCC), and Wayne Community College (WCC) was awarded an S-STEM Track 3 Grant (Grant number: 1930497). The purpose of this grant was to support low-income students at each partner institution, to research best practices in recruiting and retaining low-income students at both universities and community colleges, and to research how such programs influence the transfer outcomes from two-year to four-year schools. This grant provides scholarship support for two cohorts of students, one starting their engineering studies in Fall 2020 and the other starting their engineering studies in Fall 2021. Each cohort was to be comprised of 40 students including 20 students at ECU and 20 students divided among the three partnering community colleges. In addition to supporting student scholarships, this grant supported the establishment of new student support mechanisms and enhancement of existing support systems on each campus. This project involved the creation of a faculty mentoring program, designing a summer bridge program, establishing a textbook lending library, and enhancing activities for students in a living-learning community, expansion of university tutoring initiatives to allow access for community college students, and promoting a new peer mentoring initiative. The program emphasizes career opportunities including promoting on-campus career fairs, promoting internship and co-op opportunities, and bringing in guest speakers from various industry partners. A goal of the program was to allow community college students to build relationships with university students and faculty so they can more easily assimilate into the student body at the university upon transfer. This paper presents the challenges presented to the project in the first year and the pivoting that occurred due the pandemic. Data is presented regarding recruitment of scholars in both cohorts and retention of scholars from year 1 to year 2. 
    more » « less
  4. Achieving Change in our Communities for Equity and Student Success (ACCESS) in STEM at the University of Washington Tacoma started as a Track 1 S-STEM program in 2018 and has supported 69 students to date. This year we received Track 2 funding and welcomed our fifth cohort to campus, with funding to support ~32 additional students through 2026. University of Washington Tacoma is an Asian American and Native American Pacific Islander-serving institution (AANAPISI), and we serve a high proportion of racial minority and first generation college students. Our ACCESS scholars are pursuing bachelor’s degrees in Mathematics, Environmental Science, Biomedical Sciences, Information Technology, Computer Science and Systems, Computer Engineering and Systems, Electrical Engineering, Mechanical Engineering, and Civil Engineering, with Computer Science and Engineering representing over 60% of ACCESS scholars to date. First-time college students and first-year transfer students receive full scholarships for their first two years, and partial scholarships for their third and fourth years. The project includes an optional Early Fall Math course to enhance entry into STEM majors, and participants are able to engage in a Research Experience or project-based Introduction to Engineering course in their first year. Coupled with individual faculty mentoring and an on-campus STEM living learning community, the quarterly Success in STEM seminar course helps scholars form a cohesive community through group mentoring, as well as develop a sense of belonging, identity, and empowerment to transform the culture of STEM. This program is distinguished by its focus on pre-STEM majors in their first and second years on campus, and includes mentor training for ~30-40 faculty in teaching and mentoring diverse student populations, thus impacting all students in our majors. Our goal was to evaluate the effectiveness of a program that focuses on the first two years of college and provides financial support, courses to introduce students to research and project-based engineering, and intensive mentoring in increasing retention and academic success for Computer Science and Engineering (CS+E) students, and whether this program helps to close equity gaps for CS+E students who are low socioeconomic status (SES), underrepresented minorities (URMs), female, and/or first generation in college (First Gen) students. We compared our student scholars to a comparison group of students who met eligibility requirements but did not participate in the program. Program scholars had higher first and second year retention, and had significantly higher GPAs. The pandemic resulted in significant social, emotional, and economic stresses for our program scholars, which may have heightened the impact of the ACCESS in STEM program. 
    more » « less
  5. With support from the National Science Foundation’s Division of Undergraduate Education, this five-year project led by a two-year HSI seeks to provide underrepresented students with mentored work experiences in computer information systems. Students will have access to on-campus work experiences and internships in businesses and industries. It is anticipated that some examples of potential student projects include mobile application development, cybersecurity, and computer support. It is expected that these experiences will increase undergraduate student interest, persistence, and success in computer information systems, as well as in STEM more broadly. To ensure that they are well-prepared for and gain the most from their work experiences, students will receive training on employability skills such as communication, teamwork, and project management. In addition, during their work experiences, students will be mentored by faculty, industry professionals, and peers. To strengthen the capacity of faculty to serve all students, including Hispanic students, the project will provide faculty with professional development focused on equity mindset. This framework to provide mentored work experiences will be developed and piloted at Phoenix College, in the computer information technology department and eventually expanded to other STEM fields at the institution. Following this, the project also intends to expand this framework four other two-year HSIs in the region. Through this work, the project aims to develop a replicable model for how two-year institutions can develop work experiences that foster increased student graduation and entry into STEM career pathways. This project, which is currently in its first year, seeks to examine how a curriculum that integrates cross-sector partnerships to provide work experiences can enhance STEM learning and retention. Using mixed methods and grounded theory, the project will expand knowledge about: (1) the impact of cross-sector partnerships that support work-focused experiential teaching and learning; (2) systematic ways to maintain and better use cross-sector partnerships; and (3) the degree to which a model of work-focused learning experiences can be adopted at other two-year HSIs and by other STEM fields. Baseline data about Hispanic serving identity at the pilot institution has been collected and assessed at the institutional, departmental, and for different educator roles including faculty, support staff, and administrative leaders to produce inputs towards developing a detailed plan of action. Early results from baseline data, visualizations, and planning responses will be reported in the submission. Expected long term results of the project include: development of sustainable mechanisms to foster cross-sector partnerships; increased student retention and workforce readiness; and measurable successes for STEM students, particularly Hispanic students, at two-year HSIs. 
    more » « less