skip to main content

Title: Photonic Integrated Circuit for Rapidly Tunable Orbital Angular Momentum Generation Using Sb 2 Se 3 Ultra‐Low‐Loss Phase Change Material

The generation of rapidly tunable optical vortex (OV) beams is one of the most demanding research areas of the present era as they possess orbital angular momentum (OAM) with additional degrees of freedom that can be exploited to enhance signal‐carrying capacity by using mode division multiplexing and information encoding in optical communication. Particularly, rapidly tunable OAM devices at a fixed wavelength in the telecom band stir extensive interest among researchers for both classical and quantum applications. This article demonstrates the realistic design of a Si‐integrated photonic device for rapidly tunable OAM wave generation at a 1550‐nm wavelength by using an ultra‐low‐loss phase change material (PCM) embedded with a Si‐ring resonator with angular gratings. Different OAM modes are achieved by tuning the effective refractive index using rapid electrical switching of Sb2Se3 film from amorphous to crystalline states and vice versa. The generation of OAM waves relies on a traveling wave modulation of the refractive index of the micro‐ring, which breaks the degeneracy of oppositely oriented whispering gallery modes. The proposed device is capable of producing rapidly tunable OV beams, carrying different OAM modes by using electrically controllable switching of ultra‐low‐loss PCM Sb2Se3.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we explore inverse designed reconfigurable digital metamaterial structures based on phase change material Sb2Se3for efficient and compact integrated nanophotonics. An exemplary design of a 1 × 2 optical switch consisting of a 3 µm x 3 µm pixelated domain is demonstrated. We show that: (i) direct optimization of a domain containing only Si and Sb2Se3pixels does not lead to a high extinction ratio between output ports in the amorphous state, which is owed to the small index contrast between Si and Sb2Se3in such a state. As a result, (ii) topology optimization, e.g., the addition of air pixels, is required to provide an initial asymmetry that aids the amorphous state's response. Furthermore, (iii) the combination of low loss and high refractive index change in Sb2Se3, which is unique among all phase change materials in the telecommunications 1550 nm band, translates into an excellent projected performance; the optimized device structure exhibits a low insertion loss (∼1.5 dB) and high extinction ratio (>18 dB) for both phase states.

    more » « less
  2. We propose and simulate a compact (∼29.5 µm-long) nonvolatile polarization switch based on an asymmetric Sb2Se3-clad silicon photonic waveguide. The polarization state is switched between TM0and TE0mode by modifying the phase of nonvolatile Sb2Se3between amorphous and crystalline. When the Sb2Se3is amorphous, two-mode interference happens in the polarization-rotation section resulting in efficient TE0-TM0conversion. On the other hand, when the material is in the crystalline state, there is little polarization conversion because the interference between the two hybridized modes is significantly suppressed, and both TE0and TM0modes go through the device without any change. The designed polarization switch has a high polarization extinction ratio of > 20 dB and an ultra-low excess loss of < 0.22 dB in the wavelength range of 1520-1585 nm for both TE0and TM0modes.

    more » « less
  3. Abstract

    All‐optical control and detection of magnetic states for high‐density recording necessitate nanophotonic approaches to amplify local light intensity below the diffraction limit. Sculpting the near‐field phase and polarization can additionally strengthen magneto‐optical effects that rely on circularly polarized pulses, such as all‐optical helicity‐dependent switching, imaging, and spin‐wave excitation. Here, high‐refractive‐index dielectric nanoantennas illuminated with circularly polarized light resonantly enhance local electric field rotation by more than sixfold within [Pt/Co]Nthin films. Sub‐wavelength arrays of amorphous Si nanodisks, or metasurfaces, patterned on perpendicularly magnetized films support Mie‐type resonances that modulate reflection and transmission dissymmetry by >±2% in experiments. Spatial and spectral interference between dipolar modes, proximity effects, and gain are evaluated by varying disk aspect ratio, metasurface–metal separation, and magnetic film thickness, respectively. Simulated enhancements in magnetic circular birefringence and differential absorption are correlated with amplified local field rotation at electric dipolar modes. Greater achievable amplifications are shown via simulations with single‐crystalline Si metasurfaces exhibiting lower losses, including a 12‐fold strengthened electric field rotation within ferromagnetic layers. The metasurface design rules established here could enable nanoscale localization of all‐optical magnetic switching with lowered laser fluence thresholds, as well as enhanced magneto‐optical responses for light‐assisted reading in spintronic devices.

    more » « less
  4. We demonstrate tunable generation of orbital angular momentum (OAM) modes with low loss (0.7 dB) and high efficiency (><#comment/>90%<#comment/>) over a 230 nm in the visible and near-infrared spectral range using all-fiber acousto-optic-induced long period gratings. This represents tuning over almost 33% of the carrier frequency, and measured output OAM mode purities are as high as 99%. Our device construction allows accessing any wavelength in the range we probed (591–818 nm) with at most a 55 µs response time. The high-speed tunability, large spectral coverage, and high mode purity can be potentially useful in numerous applications requiring spectrally diverse OAM light.

    more » « less
  5. We study the relationship between the input phase delays and the output mode orders when using a pixel-array structure fed by multiple single-mode waveguides for tunable orbital-angular-momentum (OAM) beam generation. As an emitter of a free-space OAM beam, the designed structure introduces a transformation function that shapes and coherently combines multiple (e.g., four) equal-amplitude inputs, with thekth input carrying a phase delay of(k−<#comment/>1)Δ<#comment/>φ<#comment/>. The simulation results show that (1) the generated OAM order ℓ is dependent on the relative phase delayΔ<#comment/>φ<#comment/>; (2) the transformation function can be tailored by engineering the structure to support different tunable ranges (e.g., l={−<#comment/>1},{−<#comment/>1,+1},{−<#comment/>1,0,+1}, or{−<#comment/>2,−<#comment/>1,+1,+2}); and (3) multiple independent coaxial OAM beams can be generated by simultaneously feeding the structure with multiple independent beams, such that each beam has its ownΔ<#comment/>φ<#comment/>value for the four inputs. Moreover, there is a trade-off between the tunable range and the mode purity, bandwidth, and crosstalk, such that the increase of the tunable range leads to (a) decreased mode purity (from 91% to 75% forl=−<#comment/>1), (b) decreased 3 dB bandwidth of emission efficiency (from 285 nm forl={−<#comment/>1}to 122 nm forl={−<#comment/>2,−<#comment/>1,+1,+2}), and (c) increased crosstalk within the C-band (from−<#comment/>23.7to−<#comment/>13.2dBwhen the tunable range increases from 2 to 4).

    more » « less