skip to main content


Title: Guiding epitaxial crystallization of amorphous solids at the nanoscale: Interfaces, stress, and precrystalline order
The crystallization of amorphous solids impacts fields ranging from inorganic crystal growth to biophysics. Promoting or inhibiting nanoscale epitaxial crystallization and selecting its final products underpin applications in cryopreservation, semiconductor devices, oxide electronics, quantum electronics, structural and functional ceramics, and advanced glasses. As precursors for crystallization, amorphous solids are distinguished from liquids and gases by the comparatively long relaxation times for perturbations of the mechanical stress and for variations in composition or bonding. These factors allow experimentally controllable parameters to influence crystallization processes and to drive materials toward specific outcomes. For example, amorphous precursors can be employed to form crystalline phases, such as polymorphs of Al 2 O 3 , VO 2 , and other complex oxides, that are not readily accessible via crystallization from a liquid or through vapor-phase epitaxy. Crystallization of amorphous solids can further be guided to produce a desired polymorph, nanoscale shape, microstructure, or orientation of the resulting crystals. These effects enable advances in applications in electronics, magnetic devices, optics, and catalysis. Directions for the future development of the chemical physics of crystallization from amorphous solids can be drawn from the structurally complex and nonequilibrium atomic arrangements in liquids and the atomic-scale structure of liquid–solid interfaces.  more » « less
Award ID(s):
1720415
NSF-PAR ID:
10376440
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
10
ISSN:
0021-9606
Page Range / eLocation ID:
100901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tunneling field effect transistors (TFETs) have gained much interest in the previous decade for use in low power CMOS electronics due to their sub-thermal switching [1]. To date, all TFETs are fabricated as vertical nanowires or fins with long, difficult processes resulting in long learning cycle and incompatibility with modern CMOS processing. Because most TFETs are heterojunction TFETs (HJ-TFETs), the geometry of the device is inherently vertically because dictated by the orientation of the tunneling HJ, achieved by typical epitaxy. Template assisted selective epitaxy was demonstrated for vertical nanowires [2] and horizontally arranged nanorods [3] for III-V on Si integration. In this work, we report results on the area selective and template assisted epitaxial growth of InP, utilizing SiO2 based confined structures on InP substrates, which enables horizontal HJs, that can find application in the next generation of TFET devices. The geometries of the confined structures used are so that only a small area of the InP substrate, dubbed seed, is visible to the growth atmosphere. Growth is initiated selectively only at the seed and then proceeds in the hollow channel towards the source hole. As a result, growth resembles epitaxial lateral overgrowth from a single nucleation point [4], reaping the benefits of defect confinement and, contrary to spontaneous nanowire growth, allows orientation in an arbitrary, template defined direction. Indium phosphide 2-inch (110) wafers are used as the starting substrate. The process flow (Fig.1) consists of two plasma enhanced chemical vapor deposition (PECVD) steps of SiO2, appropriately patterned with electron beam lithography (EBL), around a PECVD amorphous silicon sacrificial layer. The sacrificial layer is ultimately wet etched with XeF2 to form the final, channel like template. Not shown in the schematic in Fig.1 is an additional, ALD deposited, 3 nm thick, alumina layer which prevents plasma damage to the starting substrate and is removed via a final tetramethylammonium hydroxide (TMAH) based wet etch. As-processed wafers were then diced and loaded in a Thomas Swan Horizontal reactor. Successful growth conditions found were 600°C with 4E6 mol/min of group III precursor, a V/III ratio of 400 and 8 lpm of hydrogen as carrier gas. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) were used as In and P precursors respectively. Top view SEM (Fig.2) confirms growth in the template thanks to sufficient Z-contrast despite the top oxide layer, not removed before imaging. TEM imaging shows a cross section of the confined structure taken at the seed hole (Fig.3). The initial growth interface suggests growth was initiated at the seed hole and atomic order of the InP conforms to the SiO2 template both at the seed and at the growth front. A sharp vertical facet is an encouraging result for the future development of vertical HJ based III-V semiconductor devices. 
    more » « less
  2. Abstract

    Controlling crystallization kinetics is key to overcome the temperature–time dilemma in phase change materials employed for data storage. While the amorphous phase must be preserved for more than 10 years at slightly above room temperature to ensure data integrity, it has to crystallize on a timescale of several nanoseconds following a moderate temperature increase to near 2/3Tmto compete with other memory devices such as dynamic random access memory (DRAM). Here, a calorimetric demonstration that this striking variation in kinetics involves crystallization occurring either from the glassy or from the undercooled liquid state is provided. Measurements of crystallization kinetics of Ge2Sb2Te5with heating rates spanning over six orders of magnitude reveal a fourfold decrease in Kissinger activation energy for crystallization upon the glass transition. This enables rapid crystallization above the glass transition temperatureTg. Moreover, highly unusual for glass‐forming systems, crystallization at conventional heating rates is observed more than 50 °C belowTg, where the atomic mobility should be vanishingly small.

     
    more » « less
  3. The nanoscale structure and macroscopic morphology of π-conjugated polymers are very important for their electronic application. While ordered single crystals of small molecules have been obtained via solution deposition, macroscopically aligned films of π-conjugated polymers deposited directly from solution have always required surface modification or complex pre-deposition processing of the solution. Here, ordered nanowires were obtained via shear-enhanced crystallization of π-conjugated polymers at the air–liquid–solid interface using simple deposition of the polymer solution onto an inclined substrate. The formation of macroscopically aligned nanowire arrays was found to be due to the synergy between intrinsic (π-conjugated backbone) and external (crystallization conditions) effects. The oriented nanowires showed remarkable improvement in the charge carrier mobility compared to spin-coated films as characterized in organic field-effect transistors (OFETs). Considering the simplicity and large-scale applicability, shear-enhanced crystallization of π-conjugated polymers provides a promising strategy to achieve high-performance polymer semiconductor films for electronics applications. 
    more » « less
  4. ABSTRACT

    Karavannoe is a pallasite found in Russia in 2010. The mineralogy, chemistry, and oxygen isotopic composition indicate that Karavannoe is a member of the Eagle Station Pallasite (ESP) group. Karavannoe contains mostly olivine and subdued interstitial Fe,Ni‐metal. Zoned distribution of FeO in small, rounded grains of olivine and FeO and Al2O3in chromite shows that the cooling rate of the melt was fast during the crystallization of the round olivine grains. Siderophile element distribution and correlations of Au‐As and Os‐Ir concentrations in Karavannoe and the other ESP metal record its magmatic origin. FeO‐rich composition of olivine, low W and Ga, and high Ni abundances in the Karavannoe metal indicate the formation of the metal from an oxidized chondrite precursor. Model calculations demonstrate that the ESPs’ metal compositions correspond to the solids of the fractional crystallization of CV‐ or CO‐chondrite‐derived metallic liquids. The Karavannoe metal composition corresponds to the solid fraction crystallized after ~40% fractional crystallization. The Mg/(Mg+Fe) atom ratio of complementary silicate liquid corresponds to Fo70, possibly indicating that the olivine is not in equilibrium with the metal and could have been a product of the late evolutionary processes in the Karavannoe parent body mantle. In any ESP genesis Karavannoe was not in equilibrium with its metal and is a product of mantle differentiation processes. Olivine of Karavannoe and ESPs is similar in composition, while the metal is different. We propose a model of ESP formation involving an impact‐induced intrusion of liquid core metal into a basal mantle layer, followed by fractional crystallization of the metal. The metal textures and chemical zoning of Karavannoe minerals point to remelting and rapid cooling due to a later impact event.

     
    more » « less
  5. The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has shown attractive prospects in abundance and high atomic diffusion property of oxygen atoms, transparency. Additionally, its electrical properties can be easily modulated by controlling the stoichiometric ratio of indium and gallium as well as oxygen potential in the sputter gas. Moreover, since the IGZO can be applied to both the thin-film transistor (TFT) channel and RS layer, it has a great potential for fully integrated transparent electronics application. In this work, we proposed amorphous transparent IGZO-based RRAMs and investigated switching behaviors of the memory cells prepared with different top electrodes. First, ITO was choosing to serve as both TE and BE to achieve high transmittance. A multi-target magnetron sputtering system was employed to deposit all three layers (TE, RS, BE layers) on glass substrate. I-V characteristics were evaluated by a semiconductor parameter analyzer, and the bipolar RS feature of our RRAM devices was demonstrated by typical butterfly curves. The optical transmission analysis was carried out via a UV-Vis spectrometer and the average transmittance was around 80% out of entire devices in the visible-light wavelength range, implying high transparency. We adjusted the oxygen partial pressure during the sputtering of IGZO to optimize the property because the oxygen vacancy concentration governs the RS performance. Electrode selection is crucial and can impact the performance of the whole device. Thus, Cu TE was chosen for our second type of device because the diffusion of Cu ions can be beneficial for the formation of the conductive filament (CF). A ~5 nm SiO 2 barrier layer was employed between TE and RS layers to confine the diffusion of Cu into the RS layer. At the same time, this SiO 2 inserting layer can provide an additional interfacial series resistance in the device to lower the off current, consequently, improve the on/off ratio and whole performance. Finally, an oxygen affinity metal Ti was selected as the TE for our third type of device because the concentration of the oxygen atoms can be shifted towards the Ti electrode, which provides an oxygengettering activity near the Ti metal. This process may in turn lead to the formation of a sub-stoichiometric region in the neighboring oxide that is believed to be the origin of better performance. In conclusion, the transparent amorphous IGZO-based RRAMs were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of RRAMs, we integrated a set of TE materials, and a barrier layer on IGZO-based RRAM and compared the switch characteristics. Our encouraging results clearly demonstrate that IGZO is a promising material in RRAM applications and breaking the bottleneck of current memory technologies. 
    more » « less