skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cosmological particle production and pairwise hotspots on the CMB
A bstract Heavy particles with masses much bigger than the inflationary Hubble scale H * , can get non-adiabatically pair produced during inflation through their couplings to the inflaton. If such couplings give rise to time-dependent masses for the heavy particles, then following their production, the heavy particles modify the curvature perturbation around their locations in a time-dependent and scale non-invariant manner. This results into a non-trivial spatial profile of the curvature perturbation that is preserved on superhorizon scales and eventually generates localized hot or cold spots on the CMB. We explore this phenomenon by studying the inflationary production of heavy scalars and derive the final temperature profile of the spots on the CMB by taking into account the subhorizon evolution, focusing in particular on the parameter space where pairwise hot spots (PHS) arise. When the heavy scalar has an $$ \mathcal{O} $$ O (1) coupling to the inflaton, we show that for an idealized situation where the dominant background to the PHS signal comes from the standard CMB fluctuations themselves, a simple position space search based on applying a temperature cut, can be sensitive to heavy particle masses M 0 /H * ∼ $$ \mathcal{O} $$ O (100). The corresponding PHS signal also modifies the CMB power spectra and bispectra, although the corrections are below (outside) the sensitivity of current measurements (searches).  more » « less
Award ID(s):
2014165
PAR ID:
10376590
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract Non-analyticity in co-moving momenta within the non-Gaussian bispectrum is a distinctive sign of on-shell particle production during inflation, presenting a unique opportunity for the “direct detection” of particles with masses as large as the inflationary Hubble scale ( H ). However, the strength of such non-analyticity ordinarily drops exponentially by a Boltzmann-like factor as masses exceed H . In this paper, we study an exception provided by a dimension-5 derivative coupling of the inflaton to heavy-particle currents, applying it specifically to the case of two real scalars. The operator has a “chemical potential” form, which harnesses the large kinetic energy scale of the inflaton, $$ {\overset{\cdot }{\phi}}_0^{1/2}\approx 60H $$ ϕ ⋅ 0 1 / 2 ≈ 60 H , to act as an efficient source of scalar particle production. Derivative couplings of inflaton ensure radiative stability of the slow-roll potential, which in turn maintains (approximate) scale-invariance of the inflationary correlations. We show that a signal not suffering Boltzmann suppression can be obtained in the bispectrum with strength f NL ∼ $$ \mathcal{O} $$ O (0 . 01–10) for an extended range of scalar masses $$ \lesssim {\overset{\cdot }{\phi}}_0^{1/2} $$ ≲ ϕ ⋅ 0 1 / 2 , potentially as high as 10 15 GeV, within the sensitivity of upcoming LSS and more futuristic 21-cm experiments. The mechanism does not invoke any particular fine-tuning of parameters or breakdown of perturbation-theoretic control. The leading contribution appears at tree-level , which makes the calculation analytically tractable and removes the loop-suppression as compared to earlier chemical potential studies of non-zero spins. The steady particle production allows us to infer the effective mass of the heavy particles and the chemical potential from the variation in bispectrum oscillations as a function of co-moving momenta. Our analysis sets the stage for generalization to heavy bosons with non-zero spin. 
    more » « less
  2. The coupling between a pseudo-scalar inflaton and a gauge field leads to an amount of additional density perturbations and gravitational waves (GWs) that is strongly sensitive to the inflaton speed. This naturally results in enhanced GWs at (relatively) small scales that exited the horizon well after the CMB ones, and that can be probed by a variety of GW observatories (from pulsar timing arrays, to astrometry, to space-borne and ground-based interferometers). This production occurs in a regime in which the gauge field significantly backreacts on the inflaton motion. Contrary to earlier assumptions, it was later shown that this regime is characterized by an oscillatory behavior of the inflaton speed, with a period of O ( 5 ) e-folds. Bursts of GWs are produced at the maxima of the speed, imprinting nearly periodic bumps in the frequency-dependent spectrum of GWs produced during inflation. This can potentially generate correlated peaks appearing in the same or in different GWs experiments. While recent lattice studies show that the inclusion of inflaton gradients can modify significantly the dynamics of this system in the strong backreaction regime, this is not the case for the first oscillation or two of the inflaton speed, so that we expect our results to be robust for modes that were excited during that epoch. 
    more » « less
  3. Abstract Axion-like particles (ALPs) can form a network of cosmic strings and domain walls that survives after recombination and leads to anisotropic birefringence of the cosmic microwave background (CMB). In addition to studying cosmic strings, we clarify and emphasize how the formation of ALP-field domain walls impacts the cosmic birefringence signal; these observations provide a unique way of probing ALPs with masses in the range 3 H 0 ≲ m a ≲ 3 H cmb . Using measurements of CMB birefringence from several telescopes, we find no evidence for axion-defect-induced anisotropic birefringence of the CMB. We extract constraints on the model parameters that include the ALP mass m a , ALP-photon coupling 𝒜 ∝ g aγγ f a , the domain wall number N dw , and parameters characterizing the abundance and size of defects in the string-wall network. Considering also recent evidence for isotropic CMB birefringence, we find it difficult to accommodate this with the non-detection of anisotropic birefringence under the assumption that the signal is generated by an ALP defect network. 
    more » « less
  4. Effective field theories (EFTs) of heavy particles coupled to the inflaton are rife with operator redundancies, frequently obscured by sensitivity to both boundary terms and field redefinitions. We initiate a systematic study of these redundancies by establishing a minimal operator basis for an archetypal example, the abelian gauge-Higgs-inflaton EFT. Working up to dimension 9, we show that certain low-dimensional operators are entirely redundant and identify new non-redundant operators with potentially interesting cosmological collider signals. Our methods generalize straightforwardly to other EFTs of heavy particles coupled to the inflaton. 
    more » « less
  5. A bstract A search has been performed for heavy resonances decaying to ZZ or ZW and for axion-like particles (ALPs) mediating nonresonant ZZ or ZH production, in final states with two charged leptons ( ℓ = e , μ) produced by the decay of a Z boson, and two quarks produced by the decay of a Z, W, or Higgs boson H. The analysis is sensitive to resonances with masses in the range 450 to 2000 GeV. Two categories are defined corresponding to the merged or resolved reconstruction of the hadronically decaying boson. The search is based on data collected during 2016–2018 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb − 1 . No significant excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-2 and spin-1 resonances are derived as functions of the resonance mass, and exclusion limits on the production of bulk graviton particles and W′ bosons are calculated in the framework of the warped extra dimensions and heavy vector triplet models, respectively. In addition, upper limits on the ALP-mediated diboson production cross section and ALP couplings to standard model particles are obtained in the framework of linear and chiral effective field theories. These are the first limits on nonresonant ALP-mediated ZZ and ZH production obtained by the LHC experiments. 
    more » « less