skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Move2Hear: Active Audio-Visual Source Separation
We introduce the active audio-visual source separation problem, where an agent must move intelligently in order to better isolate the sounds coming from an object of interest in its environment. The agent hears multiple audio sources simultaneously (e.g., a person speaking down the hall in a noisy household) and it must use its eyes and ears to automatically separate out the sounds originating from a target object within a limited time budget. Towards this goal, we introduce a reinforcement learning approach that trains movement policies controlling the agent’s camera and microphone placement over time, guided by the improvement in predicted audio separation quality. We demonstrate our approach in scenarios motivated by both augmented reality (system is already co-located with the target object) and mobile robotics (agent begins arbitrarily far from the target object). Using state-of-the-art realistic audio-visual simulations in 3D environments, we demonstrate our model’s ability to find minimal movement sequences with maximal payoff for audio source separation.  more » « less
Award ID(s):
2120430
PAR ID:
10376661
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE/CVF International Conference on Computer Vision (ICCV)
Page Range / eLocation ID:
275 to 285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The way an object looks and sounds provide complementary reflections of its physical properties. In many settings cues from vision and audition arrive asynchronously but must be integrated, as when we hear an object dropped on the floor and then must find it. In this paper, we introduce a setting in which to study multi-modal object localization in 3D virtual environments. An object is dropped somewhere in a room. An embodied robot agent, equipped with a camera and microphone, must determine what object has been dropped -- and where -- by combining audio and visual signals with knowledge of the underlying physics. To study this problem, we have generated a large-scale dataset -- the Fallen Objects dataset -- that includes 8000 instances of 30 physical object categories in 64 rooms. The dataset uses the ThreeDWorld Platform that can simulate physics-based impact sounds and complex physical interactions between objects in a photorealistic setting. As a first step toward addressing this challenge, we develop a set of embodied agent baselines, based on imitation learning, reinforcement learning, and modular planning, and perform an in-depth analysis of the challenge of this new task. 
    more » « less
  2. As augmented and virtual reality (AR/VR) technology matures, a method is desired to represent real-world persons visually and aurally in a virtual scene with high fidelity to craft an immersive and realistic user experience. Current technologies leverage camera and depth sensors to render visual representations of subjects through avatars, and microphone arrays are employed to localize and separate high-quality subject audio through beamforming. However, challenges remain in both realms. In the visual domain, avatars can only map key features (e.g., pose, expression) to a predetermined model, rendering them incapable of capturing the subjects’ full details. Alternatively, high-resolution point clouds can be utilized to represent human subjects. However, such three-dimensional data is computationally expensive to process. In the realm of audio, sound source separation requires prior knowledge of the subjects’ locations. However, it may take unacceptably long for sound source localization algorithms to provide this knowledge, which can still be error-prone, especially with moving objects. These challenges make it difficult for AR systems to produce real-time, high-fidelity representations of human subjects for applications such as AR/VR conferencing that mandate negligible system latency. We present Acuity, a real-time system capable of creating high-fidelity representations of human subjects in a virtual scene both visually and aurally. Acuity isolates subjects from high-resolution input point clouds. It reduces the processing overhead by performing background subtraction at a coarse resolution, then applying the detected bounding boxes to fine-grained point clouds. Meanwhile, Acuity leverages an audiovisual sensor fusion approach to expedite sound source separation. The estimated object location in the visual domain guides the acoustic pipeline to isolate the subjects’ voices without running sound source localization. Our results demonstrate that Acuity can isolate multiple subjects’ high-quality point clouds with a maximum latency of 70 ms and average throughput of over 25 fps, while separating audio in less than 30 ms. We provide the source code of Acuity at: https://github.com/nesl/Acuity. 
    more » « less
  3. Fitch, T.; Lamm, C.; Leder, H.; Teßmar-Raible, K. (Ed.)
    Listening to music activates representations of movement and social agents. Why? We ask whether high-level causal reasoning about how music was generated can lead people to link musical sounds with animate agents. To test this, we asked whether people (N=60) make flexible inferences about whether an agent caused musical sounds, integrating information from the sounds’ timing and from the visual context in which it was produced. Using a 2x2 within-subject design, we found evidence of causal reasoning: In a context where producing a musical sequence would require self-propelled movement, people inferred that an agent had been present causing the sounds. When the context provided an alternative possible explanation, this ‘explained away’ the agent, reducing the tendency to infer an agent was present for the same acoustic stimuli. People can use causal reasoning to infer whether an agent produced musical sounds, suggesting that high-level cognition can link music with social concepts. 
    more » « less
  4. Generating realistic audio for human actions is critical for applications such as film sound effects and virtual reality games. Existing methods assume complete correspondence between video and audio during training, but in real-world settings, many sounds occur off-screen or weakly correspond to visuals, leading to uncontrolled ambient sounds or hallucinations at test time. This paper introduces AV-LDM, a novel ambient-aware audio generation model that disentangles foreground action sounds from ambient background noise in in-the-wild training videos. The approach leverages a retrieval-augmented generation framework to synthesize audio that aligns both semantically and temporally with the visual input. Trained and evaluated on Ego4D and EPIC-KITCHENS datasets, along with the newly introduced Ego4D-Sounds dataset (1.2M curated clips with action-audio correspondence), the model outperforms prior methods, enables controllable ambient sound generation, and shows promise for generalization to synthetic video game clips. This work is the first to emphasize faithful video-to-audio generation focused on observed visual content despite noisy, uncurated training data. 
    more » « less
  5. The joint analysis of audio and video is a powerful tool that can be applied to various contexts, including action, speech, and sound recognition, audio-visual video parsing, emotion recognition in affective computing, and self-supervised training of deep learning models. Solving these problems often involves tackling core audio-visual tasks, such as audio-visual source localization, audio-visual correspondence, and audio-visual source separation, which can be combined in various ways to achieve the desired results. This paper provides a review of the literature in this area, discussing the advancements, history, and datasets of audio-visual learning methods for various application domains. It also presents an overview of the reported performances on standard datasets and suggests promising directions for future research. 
    more » « less