skip to main content


Title: Laser Shock Peening Induced Back Stress Mitigation in Rolled Stainless Steel
Abstract Laser shock peening (LSP) is investigated as a potential tool for reducing tensile back stress, shown here applied to rolled and annealed 304L austenitic steel. The back stress of treated and untreated dog-bone samples is extracted from hysteresis tensile testing. Electron back-scatter diffraction (EBSD) and orientation imaging microscopy (OIM) analysis quantify the geometrically necessary dislocation (GND) density distribution of unstrained and strained as well as unpeened and peened conditions. Finite element analysis (FEA) simulation models back stress and residual stress development through tensile testing and LSP treatment using known LSP pressure models and Ziegler's nonlinear kinematic hardening law. Nonlinear regression fitting of tensile testing stress–strain in as-received specimens extracts the kinematic hardening parameters that are used in numerical study. This research shows LSP may be used to overcome manufacturing design challenges presented by yield asymmetry due to back stress in rolled steel.  more » « less
Award ID(s):
1761344
NSF-PAR ID:
10376803
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
144
Issue:
6
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work studies the use of laser shock peening (LSP) to improve back stress in additively manufactured (AM) 316L parts. Unusual hardening behavior in AM metal due to tortuous microstructure and strong texture poses additional design challenges. Anisotropic mechanical behavior complicates application for mechanical design because 3D printed parts will behave differently than traditionally manufactured parts under the same loading conditions. The prevalence of back-stress hardening or the Bauschinger effect causes reduced fatigue life under random loading and dissipates beneficial compressive residual stresses that prevent crack propagation. LSP is known to improve fatigue life by inducing compressive residual stress and has been applied with promising results to AM metal parts. It is here demonstrated that LSP may also be used as a tool for mitigating tensile back-stress hardening in AM parts, thereby reducing anisotropic hardening behavior and improving design use. It is also shown that the method of application of LSP to additively manufactured parts is key for achieving effective back-stress reduction. Back stress is extracted from additively manufactured dog bone samples built in both XY and XZ directions using hysteresis tensile. Both LSPed and as-built conditions are tested and compared, showing that LSPed samples exhibit a significant reduction to back stress when the laser processing is applied to the sample along the build direction. Electron backscatter diffraction (EBSD) performed under these conditions elucidates how grain morphologies and texture contribute to the observed improvement. Crystal plasticity finite element (CPFE) modeling develops insights as to the mechanisms by which this reduction is achieved in comparison with EBSD results. In particular, the difference in plastic behavior across build orientations of identified crystal planes and grain families are shown to impact the degree of LSP-induced back-stress reduction that is sustained through tensile loading. 
    more » « less
  2. null (Ed.)
    Forming operations are known to be complex, involving many strain states, strain rates, temperatures, strain paths, and friction conditions. Material properties, such as strength and ductility, are large drivers in determining if a material can be formed into a specific part, and for selecting the equipment required for the forming operation. Predicting yielding behavior in situations such as these has been done using yield surfaces to describe material yielding in specific stress states. These models typically use initial mechanical properties, and will require correction if the material has experienced previous straining. Here, we performed interrupted uniaxial tensile testing of a 304 stainless steel to observe the effects of unloading and subsequent reloading on yielding and tensile properties. An increase in yield point developed, in which a higher yield was observed prior to returning to the bulk work hardening behavior, and the magnitude of the yield point varied with unloading conditions and strain imposed. The appearance of a yield point is attributed to strain aging or dislocation trapping at obstacles within the matrix. These results suggest that both strain aging and dislocation trapping mechanisms may be active in the matrix, which may present challenges when forming austenitic stainless and new advanced high strength steels that likely show a similar behavior. These results provide a potential area for refinement in the calculation of yielding criteria that are currently used to predict forming behavior. 
    more » « less
  3. A multi-interpolation method is proposed to determine the displacement trajectory along each axis of a cruciform specimen with the goal of achieving a linear stress path, corresponding to a constant stress triaxiality, in the center of the custom-designed, non-standard specimen during in-plane biaxial testing. Finite element simulations are used to obtain the stress path from the given displacement trajectory, which is the displacement histories imposed on the specimen loading arms. In every iteration, the displacement trajectory is updated using the interpolation between the target stress path and adjacent ones on each side of the curve. The iterations are repeated until a linearity tolerance is satisfied. In this study, the material is an austenitic stainless steel, SS316L, with the Hockett–Sherby isotropic hardening model and Yld2004-18p non-quadratic anisotropic yield function. The method is demonstrated for five stress states between pure shear and equibiaxial tension. The results show the successful determination of a displacement trajectory for the non-standard cruciform specimen so that a linear stress path and constant triaxiality at the area of interest are achieved. 
    more » « less
  4. A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT MRF) systems with CFT columns and steel wide flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT MRF considers second order geometric effects from the gravity load bearing system using a lean on column. The experimental results from the testing of a four story CFT MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear story drift response as well as the column, beam and connection moment rotation response, but overpredicted the inelastic deformation of the panel zone. 
    more » « less
  5. Abstract

    Despite plenty of static and dynamic mechanical measurements and modeling for bulk polydimethylsiloxane (PDMS) specimens, a notable gap exists in comprehensively understanding the dynamic mechanics under large cycle, low strain conditions, especially for microscale samples. This study integrates tensile testing and nanoindentation techniques to compare dynamic mechanical response for bulk PDMS samples and μ‐pillars. The results from cyclic tensile testing, which involved up to 10,000 cycles at a strain range of 10%–20%, indicate a stabilization of energy dissipation rate after the initial 25 cycles. This attributes to stress relaxation and strain hardening, validating by rapid dual‐phase exponential decay in maximum stress, coupled with an incremental increase in elastic modulus. In comparison to tensile testing, μ‐pillars exhibited a 0.82% reduction in stiffness, stabilizing ~600th cycle. Concurrently, there was an approximately twofold increase in approaching distance during the initial 120 cycles, and an approximately fourfold increase in dissipated energy over the first 80 cycles, before reaching a plateau. This lagging hysteresis effect attributes to the distribution of the resultant force, including top tension, bottom compression, and base tilt. Overall, this study illuminates temporal mechanical deformations in PDMS under two application scenarios, enhancing our understanding of PDMS mechanical behavior.

     
    more » « less