skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finding Nontrivial Minimum Fixed Points in Discrete Dynamical Systems: Complexity, Special Case Algorithms and Heuristics
Networked discrete dynamical systems are often used to model the spread of contagions and decision-making by agents in coordination games. Fixed points of such dynamical systems represent configurations to which the system converges. In the dissemination of undesirable contagions (such as rumors and misinformation), convergence to fixed points with a small number of affected nodes is a desirable goal. Motivated by such considerations, we formulate a novel optimization problem of finding a nontrivial fixed point of the system with the minimum number of affected nodes. We establish that, unless P = NP, there is no polynomial-time algorithm for approximating a solution to this problem to within the factor n^(1 - epsilon) for any constant epsilon > 0. To cope with this computational intractability, we identify several special cases for which the problem can be solved efficiently. Further, we introduce an integer linear program to address the problem for networks of reasonable sizes. For solving the problem on larger networks, we propose a general heuristic framework along with greedy selection methods. Extensive experimental results on real-world networks demonstrate the effectiveness of the proposed heuristics. A full version of the manuscript, source code and data areavailable at: https://github.com/bridgelessqiu/NMIN-FPE  more » « less
Award ID(s):
1916805 1918656
PAR ID:
10376926
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
36
Issue:
9
ISSN:
2159-5399
Page Range / eLocation ID:
9422 to 9430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider the simultaneous propagation of two contagions over a social network. We assume a threshold model for the propagation of the two contagions and use the formal framework of discrete dynamical systems. In particular, we study an optimization problem where the goal is to minimize the total number of infected nodes subject to a budget constraint on the total number of nodes that can be vaccinated. While this problem has been considered in the literature for a single contagion, our work considers the simultaneous propagation of two contagions. Since the optimization problem is NP-hard, we develop a heuristic based on a generalization of the set cover problem. Using experiments on three real-world networks, we compare the performance of the heuristic with some baseline methods. 
    more » « less
  2. null (Ed.)
    We consider the simultaneous propagation of two contagions over a social network. We assume a threshold model for the propagation of the two contagions and use the formal framework of discrete dynamical systems. In particular, we study an optimization problem where the goal is to minimize the total number of infected nodes subject to a budget constraint on the total number of nodes that can be vaccinated. While this problem has been considered in the literature for a single contagion, our work considers the simultaneous propagation of two contagions. Since the optimization problem is NP-hard, we develop a heuristic based on a generalization of the set cover problem. Using experiments on three real-world networks, we compare the performance of the heuristic with some baseline methods. 
    more » « less
  3. null (Ed.)
    Many contagion processes evolving on populations do so simultaneously, interacting over time. Examples are co-evolution of human social processes and diseases, such as the uptake of mask wearing and disease spreading. Commensurately, multi-contagion agent-based simulations (ABSs) that represent populations as networks in order to capture interactions between pairs of nodes are becoming more popular. In this work, we present a new ABS system that simulates any number of contagions co-evolving on any number of networked populations. Individual (interacting) contagion models and individual networks are speci ed, and the system computes multi-contagion dynamics over time. This is a signi cant improvement over simulation frameworks that require union graphs to handle multiple networks, and/or additional code to orchestrate the computations of multiple contagions. We provide a formal model for the simulation system, an overview of the software, and case studies that illustrate applications of interacting contagions. 
    more » « less
  4. Many contagion processes evolving on populations do so simultaneously, interacting over time. Examples are co-evolution of human social processes and diseases, such as the uptake of mask wearing and disease spreading. Commensurately, multi-contagion agent-based simulations (ABSs) that represent populations as networks in order to capture interactions between pairs of nodes are becoming more popular. In this work, we present a new ABS system that simulates any number of contagions co-evolving on any number of networked populations. Individual (interacting) contagion models and individual networks are specified, and the system computes multi-contagion dynamics over time. This is a significant improvement over simulation frameworks that require union graphs to handle multiple networks, and/or additional code to orchestrate the computations of multiple contagions. We provide a formal model for the simulation system, an overview of the software, and case studies that illustrate applications of interacting contagions. 
    more » « less
  5. Equilibria, or fixed points, play an important role in dynamical systems across various domains, yet finding them can be computationally challenging. Here, we show how to efficiently compute all equilibrium points of discrete-valued, discrete-time systems on sparse networks. Using graph partitioning, we recursively decompose the original problem into a set of smaller, simpler problems that are easy to compute, and whose solutions combine to yield the full equilibrium set. This makes it possible to find the fixed points of systems on arbitrarily large networks meeting certain criteria. This approach can also be used without computing the full equilibrium set, which may grow very large in some cases. For example, one can use this method to check the existence and total number of equilibria, or to find equilibria that are optimal with respect to a given cost function. We demonstrate the potential capabilities of this approach with examples in two scientific domains: computing the number of fixed points in brain networks and finding the minimal energy conformations of lattice-based protein folding models. 
    more » « less