Blocking the Propagation of Two Simultaneous Contagions over Networks
We consider the simultaneous propagation of two contagions over a social
network. We assume a threshold model for the propagation of the two contagions and
use the formal framework of discrete dynamical systems. In particular, we study an
optimization problem where the goal is to minimize the total number of infected nodes
subject to a budget constraint on the total number of nodes that can be vaccinated.
While this problem has been considered in the literature for a single contagion, our
work considers the simultaneous propagation of two contagions. Since the optimization
problem is NP-hard, we develop a heuristic based on a generalization of the set cover
problem. Using experiments on three real-world networks, we compare the performance
of the heuristic with some baseline methods.
- Publication Date:
- NSF-PAR ID:
- 10213746
- Journal Name:
- International conference on complex networks and their applications
- Sponsoring Org:
- National Science Foundation
More Like this
-
We consider the simultaneous propagation of two contagions over a social network. We assume a threshold model for the propagation of the two contagions and use the formal framework of discrete dynamical systems. In particular, we study an optimization problem where the goal is to minimize the total number of infected nodes subject to a budget constraint on the total number of nodes that can be vaccinated. While this problem has been considered in the literature for a single contagion, our work considers the simultaneous propagation of two contagions. Since the optimization problem is NP-hard, we develop a heuristic basedmore »
-
Nature is rife with networks that are functionally optimized to propagate inputs to perform specific tasks. Whether via genetic evolution or dynamic adaptation, many networks create functionality by locally tuning interactions between nodes. Here we explore this behavior in two contexts: strain propagation in mechanical networks and pressure redistribution in flow networks. By adding and removing links, we are able to optimize both types of networks to perform specific functions. We define a single function as a tuned response of a single “target” link when another, predetermined part of the network is activated. Using network structures generated via such optimization,more »
-
Complex contagion models have been developed to understand a wide range of social phenomena such as adoption of cultural fads, the diffusion of belief, norms, and innovations in social networks, and the rise of collective action to join a riot. Most existing works focus on contagions where individuals’ states are represented by binary variables, and propagation takes place over a single isolated network. However, characterization of an individual’s standing on a given matter as a binary state might be overly simplistic as most of our opinions, feelings, and perceptions vary over more than two states. Also, most real-world contagions takemore »
-
Spread of influence is one of the most widely studied propagation processes in the literature on complex networks. Examples include the rise of collective action to join a riot and diffusion of beliefs, norms, and cultural fads, to name a few. Most existing works on modeling influence propagation consider a single content (e.g., an opinion, decision, product, political view, etc.) spreading over a network independent from everything else. However, most real-life examples involve multiple correlated contents spreading simultaneously and exhibiting positive (e.g., opinions on same-sex marriage and gun control) or negative (e.g., opinions on universal health care and tax-relief formore »
-
Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely onmore »