skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Guided Pluralistic Building Contour Completion
Image/sketch completion is a core task that addresses the problem of completing the missing regions of an image/sketch with realistic and semantically consistent content. We address one type of completion which is producing a tentative completion of an aerial view of the remnants of a building structure. The inference process may start with as little as 10% of the structure and thus is fundamentally pluralistic (e.g., multiple completions are possible). We present a novel pluralistic building contour completion framework. A feature suggestion component uses an entropy-based model to request information from the user for the next most informative location in the image. Then, an image completion component trained using self-supervision and procedurally-generated content produces a partial or full completion. In our synthetic and real-world experiments for archaeological sites in Turkey, with up to only 4 iterations, we complete building footprints having only 10-15% of the ancient structure initially visible. We also compare to various state-of-the-art methods and show our superior quantitative/qualitative performance. While we show results for archaeology, we anticipate our method can be used for restoring highly incomplete historical sketches and for modern day urban reconstruction despite occlusions.  more » « less
Award ID(s):
2032770 1835739
PAR ID:
10377192
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The visual computer
ISSN:
0178-2789
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing image inpainting methods typically fill holes by borrowing information from surrounding pixels. They often produce unsatisfactory results when the holes overlap with or touch foreground objects due to lack of information about the actual extent of foreground and background regions within the holes. These scenarios, however, are very important in practice, especially for applications such as the removal of distracting objects. To address the problem, we propose a foreground-aware image inpainting system that explicitly disentangles structure inference and content completion. Specifically, our model learns to predict the foreground contour first, and then inpaints the missing region using the predicted contour as guidance. We show that by such disentanglement, the contour completion model predicts reasonable contours of objects, and further substantially improves the performance of image inpainting. Experiments show that our method significantly outperforms existing methods and achieves superior inpainting results on challenging cases with complex compositions. 
    more » « less
  2. Abstract Sketch2Prototype is an AI-based framework that transforms a hand-drawn sketch into a diverse set of 2D images and 3D prototypes through sketch-to-text, text-to-image, and image-to-3D stages. This framework, shown across various sketches, rapidly generates text, image, and 3D modalities for enhanced early-stage design exploration. We show that using text as an intermediate modality outperforms direct sketch-to-3D baselines for generating diverse and manufacturable 3D models. We find limitations in current image-to-3D techniques, while noting the value of the text modality for user-feedback. 
    more » « less
  3. Sketch-to-image is an important task to reduce the burden of creating a color image from scratch. Unlike previous sketch-to-image models, where the image is synthesized in an end-to-end manner, leading to an unnaturalistic image, we propose a method by decomposing the problem into subproblems to generate a more naturalistic and reasonable image. It first generates an intermediate output which is a semantic mask map from the input sketch through instance and semantic segmentation in two levels, background segmentation and foreground segmentation. Background segmentation is formed based on the context of the foreground objects. Then, the foreground segmentations are sequentially added to the created background segmentation. Finally, the generated mask map is fed into an image-to-image translation model to generate an image. Our proposed method works with 92 distinct classes. Compared to state-of-the-art sketch-to-image models, our proposed method outperforms the previous methods and generates better images. 
    more » « less
  4. Image segmentation is a fundamental task that has benefited from recent advances in machine learning. One type of segmentation, of particular interest to computer vision, is that of urban segmentation. Although recent solutions have leveraged on deep neural networks, approaches usually do not consider regularities appearing in facade structures (e.g., windows are often in groups of similar alignment, size, or spacing patterns) as well as additional urban structures such as building footprints and roofs. Moreover, both satellite and street-view images are often noisy and occluded, thus getting the complete structure segmentation from a partial observation is difficult. Our key observations are that facades and other urban structures exhibit regular structures, and additional views are often available. In this paper, we present a novel framework (RFCNet) that consists of three modules to achieve multiple goals. Specifically, we propose Regularization to improve the regularities given an initial segmentation, Fusion that fuses multiple views of the segmentation, and Completion that can infer the complete structure if necessary. Experimental results show that our method outperforms previous state-of-the-art methods quantitatively and qualitatively for multiple facade datasets. Furthermore, by applying our framework to other urban structures (e.g., building footprints and roofs), we demonstrate our approach can be generalized to various pattern types. 
    more » « less
  5. We propose a randomized algorithm with quadratic convergence rate for convex optimization problems with a self-concordant, composite, strongly convex objective function. Our method is based on performing an approximate Newton step using a random projection of the Hessian. Our first contribution is to show that, at each iteration, the embedding dimension (or sketch size) can be as small as the effective dimension of the Hessian matrix. Leveraging this novel fundamental result, we design an algorithm with a sketch size proportional to the effective dimension and which exhibits a quadratic rate of convergence. This result dramatically improves on the classical linear-quadratic convergence rates of state-of-theart sub-sampled Newton methods. However, in most practical cases, the effective dimension is not known beforehand, and this raises the question of how to pick a sketch size as small as the effective dimension while preserving a quadratic convergence rate. Our second and main contribution is thus to propose an adaptive sketch size algorithm with quadratic convergence rate and which does not require prior knowledge or estimation of the effective dimension: at each iteration, it starts with a small sketch size, and increases it until quadratic progress is achieved. Importantly, we show that the embedding dimension remains proportional to the effective dimension throughout the entire path and that our method achieves state-of-the-art computational complexity for solving convex optimization programs with a strongly convex component. We discuss and illustrate applications to linear and quadratic programming, as well as logistic regression and other generalized linear models. 
    more » « less