skip to main content


Title: Ensembles of realistic power distribution networks
The power grid is going through significant changes with the introduction of renewable energy sources and the incorporation of smart grid technologies. These rapid advancements necessitate new models and analyses to keep up with the various emergent phenomena they induce. A major prerequisite of such work is the acquisition of well-constructed and accurate network datasets for the power grid infrastructure. In this paper, we propose a robust, scalable framework to synthesize power distribution networks that resemble their physical counterparts for a given region. We use openly available information about interdependent road and building infrastructures to construct the networks. In contrast to prior work based on network statistics, we incorporate engineering and economic constraints to create the networks. Additionally, we provide a framework to create ensembles of power distribution networks to generate multiple possible instances of the network for a given region. The comprehensive dataset consists of nodes with attributes, such as geocoordinates; type of node (residence, transformer, or substation); and edges with attributes, such as geometry, type of line (feeder lines, primary or secondary), and line parameters. For validation, we provide detailed comparisons of the generated networks with actual distribution networks. The generated datasets represent realistic test systems (as compared with standard test cases published by Institute of Electrical and Electronics Engineers (IEEE)) that can be used by network scientists to analyze complex events in power grids and to perform detailed sensitivity and statistical analyses over ensembles of networks.  more » « less
Award ID(s):
1927791 1916805 2039716
NSF-PAR ID:
10377215
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
42
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The historical settlement data compilation for Spain (HISDAC-ES) is a geospatial dataset consisting of over 240 gridded surfaces measuring the physical, functional, age-related, and evolutionary characteristics of the Spanish building stock. We scraped, harmonized, and aggregated cadastral building footprint data for Spain, covering over 12,000,000 building footprints including construction year attributes, to create a multi-faceted series of gridded surfaces (GeoTIFF format), describing the evolution of human settlements in Spain from 1900 to 2020, at 100m spatial and 5 years temporal resolution. Also, the dataset contains aggregated characteristics and completeness statistics at the municipality level, in CSV and GeoPackage format.

    !!! UPDATE 08-2023 !!!: We provide a new, improved version of HISDAC-ES. Specifically, we fixed two bugs in the production code that caused an incorrect rasterization of the multitemporal BUFA layers and of the PHYS layers (BUFA, BIA, DWEL, BUNITS sum and mean). Moreover, we added decadal raster datasets measuring residential building footprint and building indoor area (1900-2020), and provide a country-wide, harmonized building footprint centroid dataset in GeoPackage vector data format.

    File descriptions:

    Datasets are available in three spatial reference systems:

    1. HISDAC-ES_All_LAEA.zip: Raster data in Lambert Azimuthal Equal Area (LAEA) covering all Spanish territory.
    2. HISDAC-ES_IbericPeninsula_UTM30.zip: Raster data in UTM Zone 30N covering all the Iberic Peninsula + Céuta and Melilla.
    3. HISDAC-ES_CanaryIslands_REGCAN.zip: Raster data in REGCAN-95, covering the Canary Islands only.
    4. HISDAC-ES_MunicipAggregates.zip: Municipality-level aggregates and completeness statistics (CSV, GeoPackage), in LAEA projection.
    5. ES_building_centroids_merged_spatjoin.gpkg: 7,000,000+ building footprint centroids in GeoPackage format, harmonized from the different cadastral systems, representing the input data for HISDAC-ES. These data can be used for sanity checks or for the creation of further, user-defined gridded surfaces.

    Source data:

    HISDAC-ES is derived from cadastral building footprint data, available from different authorities in Spain:

    • Araba province: https://geo.araba.eus/WFS_Katastroa?SERVICE=WFS&VERSION=1.1.0&REQUEST=GetCapabilities
    • Bizkaia province: https://web.bizkaia.eus/es/inspirebizkaia
    • Gipuzkoa province: https://b5m.gipuzkoa.eus/web5000/es/utilidades/inspire/edificios/
    • Navarra region: https://inspire.navarra.es/services/BU/wfs
    • Other regions: http://www.catastro.minhap.es/INSPIRE/buildings/ES.SDGC.bu.atom.xml
    • Data source of municipality polygons: Centro Nacional de Información Geográfica (https://centrodedescargas.cnig.es/CentroDescargas/index.jsp)

    Technical notes:

    Gridded data

    File nomenclature:

    ./region_projection_theme/hisdac_es_theme_variable_version_resolution[m][_year].tif

    Regions:

    • all: complete territory of Spain
    • can: Canarian Islands only
    • ibe: Iberic peninsula + Céuta + Melilla

    Projections:

    • laea: Lambert azimuthal equal area (EPSG:3035)
    • regcan: REGCAN95 / UTM zone 28N (EPSG:4083)
    • utm: ETRS89 / UTM zone 30N (EPSG:25830)

    Themes:

    • evolution / evol: multi-temporal physical measurements
    • landuse: multi-temporal building counts per land use (i.e., building function) class
    • physical / phys: physical building characteristics in 2020
    • temporal / temp: temporal characteristics (construction year statistics)

    Variables: evolution

    • budens: building density (count per grid cell area)
    • bufa: building footprint area
    • deva: developed area (any grid cell containing at least one building)
    • resbufa: residential building footprint area
    • resbia: residential building indoor area

    Variables: physical

    • bia: building indoor area
    • bufa: building footprint area
    • bunits: number of building units
    • dwel: number of dwellings

    Variables: temporal

    • mincoy: minimum construction year per grid cell
    • maxcoy: minimum construction year per grid cell
    • meancoy: mean construction year per grid cell
    • medcoy: median construction year per grid cell
    • modecoy: mode (most frequent) construction year per grid cell
    • varcoy: variety of construction years per grid cell

    Variable: landuse

    Counts of buildings per grid cell and land use type.

    Municipality-level data

    • hisdac_es_municipality_stats_multitemporal_longform_v1.csv: This CSV file contains the zonal sums of the gridded surfaces (e.g., number of buildings per year and municipality) in long form. Note that a value of 0 for the year attribute denotes the statistics for records without construction year information.
    • hisdac_es_municipality_stats_multitemporal_wideform_v1.csv: This CSV file contains the zonal sums of the gridded surfaces (e.g., number of buildings per year and municipality) in wide form. Note that a value of 0 for the year suffix denotes the statistics for records without construction year information.
    • hisdac_es_municipality_stats_completeness_v1.csv: This CSV file contains the missingness rates (in %) of the building attribute per municipality, ranging from 0.0 (attribute exists for all buildings) to 100.0 (attribute exists for none of the buildings) in a given municipality.

    Column names for the completeness statistics tables:

    • NATCODE: National municipality identifier*
    • num_total: number of buildings per munic
    • perc_bymiss: Percentage of buildings with missing built year (construction year)
    • perc_lumiss: Percentage of buildings with missing landuse attribute
    • perc_luother: Percentage of buildings with landuse type "other"
    • perc_num_floors_miss: Percentage of buildings without valid number of floors attribute
    • perc_num_dwel_miss: Percentage of buildings without valid number of dwellings attribute
    • perc_num_bunits_miss: Percentage of buildings without valid number of building units attribute
    • perc_offi_area_miss: Percentage of buildings without valid official area (building indoor area, BIA) attribute
    • perc_num_dwel_and_num_bunits_miss: Percentage of buildings missing both number of dwellings and number of building units attribute

    The same statistics are available as geopackage file including municipality polygons in Lambert azimuthal equal area (EPSG:3035).

    *From the NATCODE, other regional identifiers can be derived as follows:

    • NATCODE: 34 01 04 04001
    • Country: 34
    • Comunidad autónoma (CA_CODE): 01
    • Province (PROV_CODE): 04
    • LAU code: 04001 (province + municipality code)
     
    more » « less
  2. null (Ed.)
    Abstract—It is well known that physical interdependencies exist between networked civil infrastructures such as transportation and power system networks. In order to analyze complex nonlinear correlations between such networks, datasets pertaining to such real infrastructures are required. However, such data are not readily available due to their proprietary nature. This work proposes a methodology to generate realistic synthetic power distribution networks for a given geographical region. A network generated in this manner is not the actual distribution system, but its functionality is very similar to the real distribution network. The synthetic network connects high voltage substations to individual residential consumers through primary and secondary distribution networks. Here, the distribution network is generated by solving an optimization problem which minimizes the overall length of the network subject to structural and power flow constraints. This work also incorporates identification of long high voltage feeders originating from substations and connecting remotely situated customers in rural geographic locations while maintaining voltage regulation within acceptable limits. The proposed methodology is applied to the state of Virginia and creates synthetic distribution networks which are validated by comparing them to actual power distribution networks at the same location. Index Terms—synthetic distribution networks, radial networks, Mixed Integer Linear Programming 
    more » « less
  3. Full waveform (FW) LiDAR holds great potential for retrieving vegetation structure parameters at a high level of detail, but this prospect is constrained by practical factors such as the lack of available handy processing tools and the technical intricacy of waveform processing. This study introduces a new product named the Hyper Point Cloud (HPC), derived from FW LiDAR data, and explores its potential applications, such as tree crown delineation using the HPC-based intensity and percentile height (PH) surfaces, which shows promise as a solution to the constraints of using FW LiDAR data. The results of the HPC present a new direction for handling FW LiDAR data and offer prospects for studying the mid-story and understory of vegetation with high point density (~182 points/m2). The intensity-derived digital surface model (DSM) generated from the HPC shows that the ground region has higher maximum intensity (MAXI) and mean intensity (MI) than the vegetation region, while having lower total intensity (TI) and number of intensities (NI) at a given grid cell. Our analysis of intensity distribution contours at the individual tree level exhibit similar patterns, indicating that the MAXI and MI decrease from the tree crown center to the tree boundary, while a rising trend is observed for TI and NI. These intensity variable contours provide a theoretical justification for using HPC-based intensity surfaces to segment tree crowns and exploit their potential for extracting tree attributes. The HPC-based intensity surfaces and the HPC-based PH Canopy Height Models (CHM) demonstrate promising tree segmentation results comparable to the LiDAR-derived CHM for estimating tree attributes such as tree locations, crown widths and tree heights. We envision that products such as the HPC and the HPC-based intensity and height surfaces introduced in this study can open new perspectives for the use of FW LiDAR data and alleviate the technical barrier of exploring FW LiDAR data for detailed vegetation structure characterization. 
    more » « less
  4. INTRODUCTION Neurons are by far the most diverse of all cell types in animals, to the extent that “cell types” in mammalian brains are still mostly heterogeneous groups, and there is no consensus definition of the term. The Drosophila optic lobes, with approximately 200 well-defined cell types, provides a tractable system with which to address the genetic basis of neuronal type diversity. We previously characterized the distinct developmental gene expression program of each of these types using single-cell RNA sequencing (scRNA-seq), with one-to-one correspondence to the known morphological types. RATIONALE The identity of fly neurons is determined by temporal and spatial patterning mechanisms in stem cell progenitors, but it remained unclear how these cell fate decisions are implemented and maintained in postmitotic neurons. It was proposed in Caenorhabditis elegans that unique combinations of terminal selector transcription factors (TFs) that are continuously expressed in each neuron control nearly all of its type-specific gene expression. This model implies that it should be possible to engineer predictable and complete switches of identity between different neurons just by modifying these sustained TFs. We aimed to test this prediction in the Drosophila visual system. RESULTS Here, we used our developmental scRNA-seq atlases to identify the potential terminal selector genes in all optic lobe neurons. We found unique combinations of, on average, 10 differentially expressed and stably maintained (across all stages of development) TFs in each neuron. Through genetic gain- and loss-of-function experiments in postmitotic neurons, we showed that modifications of these selector codes are sufficient to induce predictable switches of identity between various cell types. Combinations of terminal selectors jointly control both developmental (e.g., morphology) and functional (e.g., neurotransmitters and their receptors) features of neurons. The closely related Transmedullary 1 (Tm1), Tm2, Tm4, and Tm6 neurons (see the figure) share a similar code of terminal selectors, but can be distinguished from each other by three TFs that are continuously and specifically expressed in one of these cell types: Drgx in Tm1, Pdm3 in Tm2, and SoxN in Tm6. We showed that the removal of each of these selectors in these cell types reprograms them to the default Tm4 fate. We validated these conversions using both morphological features and molecular markers. In addition, we performed scRNA-seq to show that ectopic expression of pdm3 in Tm4 and Tm6 neurons converts them to neurons with transcriptomes that are nearly indistinguishable from that of wild-type Tm2 neurons. We also show that Drgx expression in Tm1 neurons is regulated by Klumpfuss, a TF expressed in stem cells that instructs this fate in progenitors, establishing a link between the regulatory programs that specify neuronal fates and those that implement them. We identified an intronic enhancer in the Drgx locus whose chromatin is specifically accessible in Tm1 neurons and in which Klu motifs are enriched. Genomic deletion of this region knocked down Drgx expression specifically in Tm1 neurons, leaving it intact in the other cell types that normally express it. We further validated this concept by demonstrating that ectopic expression of Vsx (visual system homeobox) genes in Mi15 neurons not only converts them morphologically to Dm2 neurons, but also leads to the loss of their aminergic identity. Our results suggest that selector combinations can be further sculpted by receptor tyrosine kinase signaling after neurogenesis, providing a potential mechanism for postmitotic plasticity of neuronal fates. Finally, we combined our transcriptomic datasets with previously generated chromatin accessibility datasets to understand the mechanisms that control brain wiring downstream of terminal selectors. We built predictive computational models of gene regulatory networks using the Inferelator framework. Experimental validations of these networks revealed how selectors interact with ecdysone-responsive TFs to activate a large and specific repertoire of cell surface proteins and other effectors in each neuron at the onset of synapse formation. We showed that these network models can be used to identify downstream effectors that mediate specific cellular decisions during circuit formation. For instance, reduced levels of cut expression in Tm2 neurons, because of its negative regulation by pdm3 , controls the synaptic layer targeting of their axons. Knockdown of cut in Tm1 neurons is sufficient to redirect their axons to the Tm2 layer in the lobula neuropil without affecting other morphological features. CONCLUSION Our results support a model in which neuronal type identity is primarily determined by a relatively simple code of continuously expressed terminal selector TFs in each cell type throughout development. Our results provide a unified framework of how specific fates are initiated and maintained in postmitotic neurons and open new avenues to understanding synaptic specificity through gene regulatory networks. The conservation of this regulatory logic in both C. elegans and Drosophila makes it likely that the terminal selector concept will also be useful in understanding and manipulating the neuronal diversity of mammalian brains. Terminal selectors enable predictive cell fate reprogramming. Tm1, Tm2, Tm4, and Tm6 neurons of the Drosophila visual system share a core set of TFs continuously expressed by each cell type (simplified). The default Tm4 fate is overridden by the expression of a single additional terminal selector to generate Tm1 ( Drgx ), Tm2 ( pdm3 ), or Tm6 ( SoxN ) fates. 
    more » « less
  5. In this work, we investigate grid-forming control for power systems containing three-phase and single-phase converters connected to unbalanced distribution and transmission networks, investigate self-balancing between single-phase converters, and propose a novel balancing feedback for grid-forming control that explicitly allows to trade-off unbalances in voltage and power. We develop a quasi-steady-state power network model that allows to analyze the interactions between three-phase and single-phase power converters across transmission, distribution, and standard transformer interconnections. We first investigate conditions under which this general network admits a well-posed kron-reduced quasi-steady-state network model. Our main contribution leverages this reduced-order model to develop analytical conditions for stability of the overall network with grid-forming three-phase and single-phase converters connected through standard transformer interconnections. Specifically, we provide conditions on the network topology under which (i) single-phase converters autonomously self-synchronize to a phase-balanced operating point and (ii) single-phase converters phase-balance through synchronization with three-phase converters. Moreover, we establish that the conditions can be relaxed if a phase-balancing feedback control is used. Finally, case studies combining detailed models of transmission systems (i.e., IEEE 9-bus) and distribution systems (i.e., IEEE 13-bus) are used to illustrate the results for (i) a power system containing a mix of transmission and distribution connected converters and, (ii) a power system solely using distribution-connected converters at the grid edge. 
    more » « less