Despite efforts to diversify the science, technology, engineering, and mathematics (STEM) workforce, engineering remains a White, male-dominated profession. Often, women and underrepresented students do not identify with STEM careers and many opt out of STEM pathways prior to entering high school or college. In order to broaden participation in engineering, new methods of engaging and retaining those who are traditionally underrepresented in engineering are needed. This work is based on a promising approach for encouraging and supporting diverse participation in engineering: disciplinary literacy instruction (DLI). Generally, teachers use DLI to provide K-12 students with a framework for interpreting, evaluating, and generating discipline-specific texts. This instruction provides students with an understanding of how experts in the discipline read, engage, and generate texts used to solve problems or communicate information. While models of disciplinary literacy have been developed and disseminated in several humanities and science fields, there is a lack of empirical and theoretical research that examines the use of DLI within the engineering domain. It is thought that DLI can be used to foster diverse student interest in engineering from a young age by removing literacy-based barriers that often discourage underrepresented students from entering and pursuing careers in STEM fields. Thismore »
When Am I (N)ever Going to Use This? How Engineers Use Algebra
Mathematics is an important tool in engineering practice, as mathematical rules govern many designed systems (e.g., Nathan et al., 2013; Nathan et al., 2017). Investigations of structural engineers suggest that mathematical modelling is ubiquitous in their work, but the nature of the tasks they confront is not well-represented in the K-12 classroom (e.g., Gainsburg, 2006). This follows a larger literature base suggesting that school mathematics is often inauthentic and does represent how mathematics is used in practice. At the same time, algebra is a persistent gatekeeper to careers in engineering (e.g., Harackiewicz et al., 2012; Olson & Riordan, 2012).
In the present study, we interviewed 12 engineers, asking them a series of questions about how they use specific kinds of algebraic function (e.g., linear, exponential, quadratic) in their work. The purpose of these interviews was to use the responses to create mathematical scenarios for College Algebra activities that would be personalized to community college students’ career interests. This curriculum would represent how algebra is used in practice by STEM professionals. However, our results were not what we expected. In this paper, we discuss three major themes that arose from qualitative analyses of the interviews.
First, we found that engineers resoundingly endorsed the more »
- Award ID(s):
- 1759195
- Publication Date:
- NSF-PAR ID:
- 10377486
- Journal Name:
- 2021 ASEE Virtual Annual Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Bureau of Statistics identified an urgent demand for science, technology, engineering, and mathematics (STEM) professionals in the coming years. In order to meet this demand, the number of students graduating with STEM degrees in the United States needs to increase by 34% annually [1]. Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database is a NSF-funded first-of-its-kind initiative designed to address this national need. The E4USA project aims to make engineering more inclusive and accessible to underrepresented minorities, while increasing racial, ethnic, and gender representation in higher education and the workforce. The “for us all” mission of E4USA encompasses both students and educators. The demand for engineering educators has increased, but relying on practicing engineers to switch careers and enter teacher preparation programs has been insufficient [2, 3, 4]. This has led schools to turn to educators with limited training in engineering, which could potentially have a significant national impact on student engineering education [5, 6, 7]. Part of the E4USA pilot year mission has been to welcome educators with varying degrees of experience in industry and teaching. Paramount to E4USA was the construction of professional development (PD) experiences and a communitymore »
-
Qin Zhu, PhD Assistant Professor (Ed.)Prior research suggests various reasons for the paucity of American Indian/Alaska Native (AI/AN) people in engineering fields, including academic deficiencies, lack of role models, and minimal financial support to pursue a college education. One potential reason that has yet to be explored relates to the cultural and spiritual barriers that could deter AI/AN people from feeling a sense of belonging in engineering fields. These barriers may create obstacles to progressing through engineering career pathways. Our research investigates the range and variation of cultural/spiritual/ethical issues that may be affecting AI/AN people’s success in engineering and other science, technology, and mathematics fields. The work reported here focuses on findings from students and professionals in engineering fields specifically. The study seeks to answer two research questions: (1) What ethical issues do AI/AN students and professionals in engineering fields experience, and how do they navigate these issues?, and (2) Do ethical issues impede AI/AN students from pursuing engineering careers, and if so, how? We distributed an online survey to AI/AN college students (undergraduate and graduate) and professionals in STEM fields, including engineers, in the western United States region. Our results indicate strong connections to AI/AN culture by the participants in the study as wellmore »
-
Prior research suggests various reasons for the paucity of American Indian/Alaska Native (AI/AN) people in engineering fields, including academic deficiencies, lack of role models, and minimal financial support to pursue a college education. One potential reason that has yet to be explored relates to the cultural and spiritual barriers that could deter AI/AN people from feeling a sense of belonging in engineering fields. These barriers may create obstacles to progressing through engineering career pathways. Our research investigates the range and variation of cultural/spiritual/ethical issues that may be affecting AI/AN people’s success in engineering and other science, technology, and mathematics fields. The work reported here focuses on findings from students and professionals in engineering fields specifically. The study seeks to answer two research questions: (1) What ethical issues do AI/AN students and professionals in engineering fields experience, and how do they navigate these issues?, and (2) Do ethical issues impede AI/AN students from pursuing engineering careers, and if so, how? We distributed an online survey to AI/AN college students (undergraduate and graduate) and professionals in STEM fields, including engineers, in the western United States region. Our results indicate strong connections to AI/AN culture by the participants in the study as wellmore »
-
This complete research paper examines the connection between student beliefs about engineering as a profession, as well as the perceptions of their family and friends, to their reported self-efficacy, career expectations, and grittiness. The student responses examined were obtained from non-calculus ready engineering students at a large land grant institution in the Mid-Atlantic region. The students participated in a well-established program focused on cohort formation, mentorship, professional skill development, and fostering a sense of inclusion and belonging in engineering. The program, consisting of a one-week pre-fall bridge experience and two common courses, was founded in 2012 and has been operating with National Science Foundation (NSF) S-STEM funding since 2016. Students who received S-STEM funded scholarships are required to participate in focus groups, one-on-one interviews, and complete LAESE, MSLQ, and GRIT questionnaires each semester. The researchers applied qualitative coding methods to evaluate student responses from focus groups and one-one-one interviews which were conducted from 2017 to 2019. Questions examined in this paper include: 1) How would you describe an engineer? 2) Please describe what you think an engineer does on a daily basis. 3) What do you think your friends/family think of engineering? 4) What skills or characteristics do you thinkmore »