skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Promiscuous terpene synthases from Prunella vulgaris highlight the importance of substrate and compartment switching in terpene synthase evolution
Summary The mint family (Lamiaceae) is well documented as a rich source of terpene natural products. More than 200 diterpene skeletons have been reported from mints, but biosynthetic pathways are known for just a few of these.We crossreferenced chemotaxonomic data with publicly available transcriptomes to select common selfheal (Prunella vulgaris) and its highly unusual vulgarisin diterpenoids as a case study for exploring the origins of diterpene skeletal diversity in Lamiaceae. Four terpene synthases (TPS) from the TPS‐a subfamily, including two localised to the plastid, were cloned and functionally characterised. Previous examples of TPS‐a enzymes from Lamiaceae were cytosolic and reported to act on the 15‐carbon farnesyl diphosphate. Plastidial TPS‐a enzymes using the 20‐carbon geranylgeranyl diphosphate are known from other plant families, having apparently arisen independently in each family.All four new enzymes were found to be active on multiple prenyl‐diphosphate substrates with different chain lengths and stereochemistries. One of the new enzymes catalysed the cyclisation of geranylgeranyl diphosphate into 11‐hydroxy vulgarisane, the likely biosynthetic precursor of the vulgarisins.We uncovered the pathway to a rare diterpene skeleton. Our results support an emerging paradigm of substrate and compartment switching as important aspects of TPS evolution and diversification.  more » « less
Award ID(s):
1737898
PAR ID:
10377678
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
223
Issue:
1
ISSN:
0028-646X
Page Range / eLocation ID:
p. 323-335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack.We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in maturePinus edulisunder experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostomasp.) ofIps confusus, the main bark beetle colonizing this tree, to induce a defensive response.Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted forc.23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site.Our results show thatde novoterpene synthesis represents only a fraction of the total measured phloem terpenes inP. edulisfollowing fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance ofde novoterpene synthesis in a tree's induced defense response. 
    more » « less
  2. Abstract Insects have evolved a chemical communication system using terpenoids, a structurally diverse class of specialized metabolites, previously thought to be exclusively produced by plants and microbes. Gene discovery, bioinformatics, and biochemical characterization of multiple insect terpene synthases (TPSs) revealed that isopentenyl diphosphate synthases (IDS), enzymes from primary isoprenoid metabolism, are their likely evolutionary progenitors. However, the mutations underlying the emergence of the TPS function remain a mystery. To address this gap, we present the first structural and mechanistic model for the evolutionary emergence of TPS function in insects. Through identifying key mechanistic differences between IDS and TPS enzymes, we hypothesize that the loss of isopentenyl diphosphate (IPP) binding motifs strongly correlates with the gain of the TPS function. Based on this premise, we have elaborated the first explicit structural definition of isopentenyl diphosphate‐binding motifs (IBMs) and used the IBM definitions to examine previously characterized insect IDSs and TPSs and to predict the functions of as yet uncharacterized insect IDSs. Consistent with our hypothesis, we observed a clear pattern of disruptive substitutions to IBMs in characterized insect TPSs. In contrast, insect IDSs maintain essential consensus residues for binding IPP. Extending our analysis, we constructed the most comprehensive phylogeny of insect IDS sequences (430 full length sequences from eight insect orders) and used IBMs to predict the function of TPSs. Based on our analysis, we infer multiple, independent TPS emergence events across the class of insects, paving the way for future gene discovery efforts. 
    more » « less
  3. Abstract The diverse class of plant diterpenoid metabolites serves important functions in mediating growth, chemical defence, and ecological adaptation. In major monocot crops, such as maize (Zea mays), rice (Oryza sativa), and barley (Hordeum vulgare), diterpenoids function as core components of biotic and abiotic stress resilience. Switchgrass (Panicum virgatum) is a perennial grass valued as a stress‐resilient biofuel model crop. Previously we identified an unusually large diterpene synthase family that produces both common and species‐specific diterpenoids, several of which accumulate in response to abiotic stress.Here, we report discovery and functional characterization of a previously unrecognized monofunctional class I diterpene synthase (PvKSL1) viain vivoco‐expression assays with different copalyl pyrophosphate (CPP) isomers, structural and mutagenesis studies, as well as genomic and transcriptomic analyses.In particular, PvKSL1 convertsent‐CPP intoent‐abietadiene,ent‐palustradiene,ent‐levopimaradiene, andent‐neoabietadiene via a 13‐hydroxy‐8(14)‐ent‐abietene intermediate. Notably, although featuring a distinctent‐stereochemistry, this product profile is near‐identical to bifunctional (+)‐levopimaradiene/abietadiene synthases occurring in conifer trees. PvKSL1 has three of four active site residues previously shown to control (+)‐levopimaradiene/abietadiene synthase catalytic specificity. However, mutagenesis studies suggest a distinct catalytic mechanism in PvKSL1. Genome localization ofPvKSL1distant from other diterpene synthases, and its phylogenetic distinctiveness from known abietane‐forming diterpene synthases, support an independent evolution of PvKSL1 activity. Albeit at low levels,PvKSL1gene expression predominantly in roots suggests a role of diterpenoid formation in belowground tissue.Together, these findings expand the known chemical and functional space of diterpenoid metabolism in monocot crops. 
    more » « less
  4. Summary The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well‐defended plant lineage impacts interactions with diverse herbivores.Erysimum cheiranthoides(Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes inE. cheiranthoidesand characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. UsingE. cheiranthoidescardiac glycoside‐deficient lines, we conducted insect experiments in both the laboratory and field.EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side‐chain cleavage, andEcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate‐tolerant specialist herbivores, but did not protect against all crucifer‐feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of theE. cheiranthoidescardiac glycoside biosynthetic pathway and demonstratein vivothat cardiac glycoside production allowsErysimumto escape from some, but not all, specialist herbivores. 
    more » « less
  5. Abstract The spatial organization of genes within plant genomes can drive evolution of specialized metabolic pathways. Terpenoids are important specialized metabolites in plants with diverse adaptive functions that enable environmental interactions. Here, we report the genome assemblies of Prunella vulgaris , Plectranthus barbatus , and Leonotis leonurus . We investigate the origin and subsequent evolution of a diterpenoid biosynthetic gene cluster (BGC) together with other seven species within the Lamiaceae (mint) family. Based on core genes found in the BGCs of all species examined across the Lamiaceae, we predict a simplified version of this cluster evolved in an early Lamiaceae ancestor. The current composition of the extant BGCs highlights the dynamic nature of its evolution. We elucidate the terpene backbones generated by the Callicarpa americana BGC enzymes, including miltiradiene and the terpene (+)-kaurene, and show oxidization activities of BGC cytochrome P450s. Our work reveals the fluid nature of BGC assembly and the importance of genome structure in contributing to the origin of metabolites. 
    more » « less