Title: Rotations with Constant $$\mathbf {{\text {curl }}}$$ are Constant
Abstract We address a problem that extends a fundamental classical result of continuum mechanics from the time of its inception, as well as answers a fundamental question in the recent, modern nonlinear elastic theory of dislocations. Interestingly, the implication of our result in the latter case is qualitatively different from its well-established analog in the linear elastic theory of dislocations. It is a classical result that if $$u\in C^2({\mathbb {R}}^n;{\mathbb {R}}^n)$$ u ∈ C 2 ( R n ; R n ) and $$\nabla u \in SO(n)$$ ∇ u ∈ S O ( n ) , it follows that u is rigid. In this article this result is generalized to matrix fields with non-vanishing $${\text {curl }}$$ curl . It is shown that every matrix field $$R\in C^2(\varOmega ;SO(3))$$ R ∈ C 2 ( Ω ; S O ( 3 ) ) such that $${\text {curl }}R = constant$$ curl R = c o n s t a n t is necessarily constant. Moreover, it is proved in arbitrary dimensions that a measurable rotation field is as regular as its distributional $${\text {curl }}$$ curl allows. In particular, a measurable matrix field $$R: \varOmega \rightarrow SO(n)$$ R : Ω → S O ( n ) , whose $${\text {curl }}$$ curl in the sense of distributions is smooth, is also smooth. more »« less
Berge, Stine Marie; Malinnikova, Eugenia
(, Complex Analysis and its Synergies)
null
(Ed.)
Abstract Let $$u_{k}$$ u k be a solution of the Helmholtz equation with the wave number k , $$\varDelta u_{k}+k^{2} u_{k}=0$$ Δ u k + k 2 u k = 0 , on (a small ball in) either $${\mathbb {R}}^{n}$$ R n , $${\mathbb {S}}^{n}$$ S n , or $${\mathbb {H}}^{n}$$ H n . For a fixed point p , we define $$M_{u_{k}}(r)=\max _{d(x,p)\le r}|u_{k}(x)|.$$ M u k ( r ) = max d ( x , p ) ≤ r | u k ( x ) | . The following three ball inequality $$M_{u_{k}}(2r)\le C(k,r,\alpha )M_{u_{k}}(r)^{\alpha }M_{u_{k}}(4r)^{1-\alpha }$$ M u k ( 2 r ) ≤ C ( k , r , α ) M u k ( r ) α M u k ( 4 r ) 1 - α is well known, it holds for some $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) and $$C(k,r,\alpha )>0$$ C ( k , r , α ) > 0 independent of $$u_{k}$$ u k . We show that the constant $$C(k,r,\alpha )$$ C ( k , r , α ) grows exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds.
Akman, Murat; Hofmann, Steve; Martell, José María; Toro, Tatiana
(, Advances in Calculus of Variations)
Abstract Let Ω ⊂ ℝ n + 1 {\Omega\subset\mathbb{R}^{n+1}} , n ≥ 2 {n\geq 2} , be a 1-sided non-tangentially accessible domain (also known as uniform domain), that is, Ω satisfies the interior Corkscrew and Harnack chain conditions, which are respectively scale-invariant/quantitative versions of openness and path-connectedness. Let us assume also that Ω satisfies the so-called capacity density condition, a quantitative version of the fact that all boundary points are Wiener regular. Consider two real-valued (non-necessarily symmetric) uniformly elliptic operators L 0  u = - div  ( A 0  ∇  u ) and L  u = - div  ( A  ∇  u ) L_{0}u=-\operatorname{div}(A_{0}\nabla u)\quad\text{and}\quad Lu=-%\operatorname{div}(A\nabla u) in Ω, and write ω L 0 {\omega_{L_{0}}} and ω L {\omega_{L}} for the respective associated elliptic measures. The goal of this article and its companion[M. Akman, S. Hofmann, J. M. Martell and T. Toro,Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition,preprint 2021, https://arxiv.org/abs/1901.08261v3 ]is to find sufficient conditions guaranteeing that ω L {\omega_{L}} satisfies an A ∞ {A_{\infty}} -condition or a RH q {\operatorname{RH}_{q}} -condition with respect to ω L 0 {\omega_{L_{0}}} . In this paper, we are interested in obtaininga square function and non-tangential estimates for solutions of operators as before. We establish that bounded weak null-solutions satisfy Carleson measure estimates, with respect to the associated elliptic measure. We also show that for every weak null-solution, the associated square function can be controlled by the non-tangential maximal function in any Lebesgue space with respect to the associated elliptic measure. These results extend previous work ofDahlberg, Jerison and Kenig and are fundamental for the proof of the perturbation results in the paper cited above.
Gawlik, Evan_S; Neunteufel, Michael
(, IMA Journal of Numerical Analysis)
Abstract We construct and analyse finite element approximations of the Einstein tensor in dimension $$N \ge 3$$. We focus on the setting where a smooth Riemannian metric tensor $$g$$ on a polyhedral domain $$\varOmega \subset \mathbb{R}^{N}$$ has been approximated by a piecewise polynomial metric $$g_{h}$$ on a simplicial triangulation $$\mathcal{T}$$ of $$\varOmega $$ having maximum element diameter $$h$$. We assume that $$g_{h}$$ possesses single-valued tangential–tangential components on every codimension-$$1$$ simplex in $$\mathcal{T}$$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $$g_{h}$$ to the Einstein curvature of $$g$$ under refinement of the triangulation. We show that in the $$H^{-2}(\varOmega )$$-norm this convergence takes place at a rate of $$O(h^{r+1})$$ when $$g_{h}$$ is an optimal-order interpolant of $$g$$ that is piecewise polynomial of degree $$r \ge 1$$. We provide numerical evidence to support this claim. In the process of proving our convergence results we derive a few formulas for the evolution of certain geometric quantities under deformations of the metric.
Lamy, Xavier; Lorent, Andrew; Peng, Guanying
(, International Mathematics Research Notices)
Abstract For any compact connected one-dimensional submanifold $$K\subset \mathbb R^{2\times 2}$$ without boundary that has no rank-one connection and is elliptic, we prove the quantitative rigidity estimate $$\begin{align*} \inf_{M\in K}\int_{B_{1/2}}| Du -M |^2\, \textrm{d}x \leq C \int_{B_1} \operatorname{dist}^2(Du, K)\, \textrm{d}x, \qquad\forall u\in H^1(B_1;\mathbb R^2). \end{align*}$$This is an optimal generalization, for compact connected submanifolds of $$\mathbb R^{2\times 2}$$ without boundary, of the celebrated quantitative rigidity estimate of Friesecke, James, and Müller for the approximate differential inclusion into $SO(n)$. The proof relies on the special properties of elliptic subsets $$K\subset{{\mathbb{R}}}^{2\times 2}$$ with respect to conformal–anticonformal decomposition, which provide a quasilinear elliptic partial differential equation satisfied by solutions of the exact differential inclusion $$Du\in K$$. We also give an example showing that no analogous result can hold true in $$\mathbb R^{n\times n}$$ for $$n\geq 3$$.
Katz, B.; Au, J.; Buschkuehl, M.; Abagis, T.; Zabel, C.; Jaeggi, S.; Jonides, J.
(, Journal of cognitive neuroscience)
A gr e at d e al of i nt er e st s urr o u n d s t h e u s e of tr a n s cr a ni al dir e ct c urr e nt sti m ul ati o n (t D C S) t o a u g m e nt c o g niti v e tr ai ni n g. H o w e v er, eff e ct s ar e i n c o n si st e nt a cr o s s st u di e s, a n d m et aa n al yti c e vi d e n c e i s mi x e d, e s p e ci all y f o r h e alt h y, y o u n g a d ult s. O n e m aj or s o ur c e of t hi s i n c o n si st e n c y i s i n di vi d u al diff er e n c e s a m o n g t h e p arti ci p a nt s, b ut t h e s e diff er e n c e s ar e r ar el y e x a mi n e d i n t h e c o nt e xt of c o m bi n e d tr ai ni n g/ sti m ul ati o n st u di e s. I n a d diti o n, it i s u n cl e ar h o w l o n g t h e eff e ct s of sti m ul ati o n l a st, e v e n i n s u c c e s sf ul i nt er v e nti o n s. S o m e st u di e s m a k e u s e of f oll o w- u p a s s e s s m e nt s, b ut v er y f e w h a v e m e a s ur e d p erf or m a n c e m or e t h a n a f e w m o nt hs aft er a n i nt er v e nti o n. H er e, w e utili z e d d at a fr o m a pr e vi o u s st u d y of t D C S a n d c o g niti v e tr ai ni n g [ A u, J., K at z, B., B u s c h k u e hl, M., B u n arj o, K., S e n g er, T., Z a b el, C., et al. E n h a n ci n g w or ki n g m e m or y tr ai ni n g wit h tr a n scr a ni al dir e ct c urr e nt sti m ul ati o n. J o u r n al of C o g niti v e N e u r os ci e n c e, 2 8, 1 4 1 9 – 1 4 3 2, 2 0 1 6] i n w hi c h p arti ci p a nts tr ai n e d o n a w or ki n g m e m or y t as k o v er 7 d a y s w hil e r e c ei vi n g a cti v e or s h a m t D C S. A n e w, l o n g er-t er m f oll o w- u p t o a ss es s l at er p erf or m a n c e w a s c o n d u ct e d, a n d a d diti o n al p arti ci p a nt s w er e a d d e d s o t h at t h e s h a m c o n diti o n w a s b ett er p o w er e d. W e a s s e s s e d b a s eli n e c o g niti v e a bilit y, g e n d er, tr ai ni n g sit e, a n d m oti v ati o n l e v el a n d f o u n d si g nifi c a nt i nt er a cti o ns b et w e e n b ot h b as eli n e a bilit y a n d m oti v ati o n wit h c o n diti o n ( a cti v e or s h a m) i n m o d els pr e di cti n g tr ai ni n g g ai n. I n a d diti o n, t h e i m pr o v e m e nt s i n t h e a cti v e c o nditi o n v er s u s s h a m c o n diti o n a p p e ar t o b e st a bl e e v e n a s l o n g a s a y e ar aft er t h e ori gi n al i nt er v e nti o n. ■
Ginster, Janusz, and Acharya, Amit. Rotations with Constant $$\mathbf {{\text {curl }}}$$ are Constant. Retrieved from https://par.nsf.gov/biblio/10377957. Archive for Rational Mechanics and Analysis 244.3 Web. doi:10.1007/s00205-022-01764-6.
@article{osti_10377957,
place = {Country unknown/Code not available},
title = {Rotations with Constant $$\mathbf {{\text {curl }}}$$ are Constant},
url = {https://par.nsf.gov/biblio/10377957},
DOI = {10.1007/s00205-022-01764-6},
abstractNote = {Abstract We address a problem that extends a fundamental classical result of continuum mechanics from the time of its inception, as well as answers a fundamental question in the recent, modern nonlinear elastic theory of dislocations. Interestingly, the implication of our result in the latter case is qualitatively different from its well-established analog in the linear elastic theory of dislocations. It is a classical result that if $$u\in C^2({\mathbb {R}}^n;{\mathbb {R}}^n)$$ u ∈ C 2 ( R n ; R n ) and $$\nabla u \in SO(n)$$ ∇ u ∈ S O ( n ) , it follows that u is rigid. In this article this result is generalized to matrix fields with non-vanishing $${\text {curl }}$$ curl . It is shown that every matrix field $$R\in C^2(\varOmega ;SO(3))$$ R ∈ C 2 ( Ω ; S O ( 3 ) ) such that $${\text {curl }}R = constant$$ curl R = c o n s t a n t is necessarily constant. Moreover, it is proved in arbitrary dimensions that a measurable rotation field is as regular as its distributional $${\text {curl }}$$ curl allows. In particular, a measurable matrix field $$R: \varOmega \rightarrow SO(n)$$ R : Ω → S O ( n ) , whose $${\text {curl }}$$ curl in the sense of distributions is smooth, is also smooth.},
journal = {Archive for Rational Mechanics and Analysis},
volume = {244},
number = {3},
author = {Ginster, Janusz and Acharya, Amit},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.