The rapid human‐driven changes in the environment during the Anthropocene have placed extreme stress on many plants and animals. Beneficial interactions with microorganisms may be crucial for ameliorating these stressors and facilitating the ecosystem services host organisms provide. Foliar endophytes, microorganisms that reside within leaves, are found in essentially all plants and can provide important benefits (e.g., enhanced drought tolerance or resistance to herbivory). However, it remains unclear how important the legacy effects of the abiotic stressors that select on these microbiomes are for affecting the degree of stress amelioration provided to their hosts. To elucidate foliar endophytes' role in host‐plant salt tolerance, especially if salinity experienced in the field selects for endophytes that are better suited to improve the salt tolerance of their hosts, we combined field collections of 90 endophyte communities from 30 sites across the coastal Everglades with a manipulative growth experiment assessing endophyte inoculation effects on host‐plant performance. Specifically, we grew >350 red mangrove (
- Award ID(s):
- 1832221
- NSF-PAR ID:
- 10197021
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 12
- Issue:
- 18
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 2938
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Rhizophora mangle ) seedlings in a factorial design that manipulated the salinity environment the seedlings experienced (freshwater vs. saltwater), the introduction of field‐collected endophytes (live vs. sterilized inoculum), and the legacy of salinity stress experienced by these introduced endophytes, ranging from no salt stress (0 parts per thousand [ppt] salinity) to high salt stress (40 ppt) environments. We found that inoculation with field‐collected endophytes significantly increased mangrove performance across almost all metrics examined (15%–20% increase on average), and these beneficial effects typically occurred when the endophytes were grown in saltwater. Importantly, our study revealed the novel result that endophyte‐conferred salinity tolerance depended on microbiome salinity legacy in a key coastal foundation species. Salt‐stressed mangroves inoculated with endophyte microbiomes from high‐salinity environments performed, on average, as well as plants grown in low‐stress freshwater, while endophytes from freshwater environments did not relieve host salinity stress. Given the increasing salinity stress imposed by sea level rise and the importance of foundation species like mangroves for ecosystem services, our results indicate that consideration of endophytic associations and their salinity legacy may be critical for the successful restoration and management of coastal habitats. -
Rapid habitat changes are occuring in salt marshes located in the Northeastern United States, including expansion of ponded areas on the marsh platform, die off of coastal forests, and subsequent colonization of 'ghost forests' by marsh vegetation. This work focuses on two main areas: (1) environmental conditions along the marsh forest border undergoing rapid transitions; and (2) environmental conditions and plant stress in marsh platforms with extensive ponding, with three study sites: in Long Island and Southern New England, where there are often significant slope breaks along the upland (slope ~0.01), and in southern New Jersey on the Atlantic Coastal plan (slope ~0.003). To better understand drivers of environmental change in marsh-forest borders undergoing rapid transitions, we measured shallow groundwater levels, soil salinity, and forest health and structure along the salt marsh-upland border at three sites with varying slopes using installation of shallow groundwater wells, drone imagery and associated image processing, and geophysical methods. To better understand drivers of environmental change on the marsh platform, we measured used piezometers to understand vertical gradients in marsh groundwater levels, and measured photosynthesis and plant biomass and used drone imagery to map plant stress indices, as indicators of plant stress. While we anticipate that this data will be published in journal articles of the next 2 years, we archive collected data to facilitated data sharing, as required by NSF.more » « less
-
null (Ed.)Abstract. Sea-level rise, saltwater intrusion, and wave erosion threaten coastal marshes, but the influence of salinity on marsh erodibility remains poorly understood. We measured the shear strength of marsh soils along a salinity and biodiversity gradient in the York River estuary in Virginia to assess the direct and indirect impacts of salinity on potential marsh erodibility. We found that soil shear strength was higher in monospecific salt marshes (5–36 kPa) than in biodiverse freshwater marshes (4–8 kPa), likely driven by differences in belowground biomass. However, we also found that shear strength at the marsh edge was controlled by sediment characteristics, rather than vegetation or salinity, suggesting that inherent relationships may be obscured in more dynamic environments. Our results indicate that York River freshwater marsh soils are weaker than salt marsh soils, and suggest that salinization of these freshwater marshesmay lead to simultaneous losses in biodiversity and erodibility.more » « less
-
Abstract Changing precipitation patterns are predicted to alter ecosystem structure and function with potential carbon cycle feedbacks to climate change. Influenced by both land and sea, salt marshes are unique ecosystems and their productivity and respiration responses to precipitation change differ from those observed in terrestrial ecosystems. How salt marsh greenhouse gas fluxes and sediment microbial communities will respond to climate‐induced precipitation changes is largely unknown. We conducted 1‐year precipitation manipulation experiments in the
(high marsh) zone of two salt marshes and quantified ecosystem functions at both and microbial community structure at one. Precipitation treatments (doubled rainfall, extreme drought, and seasonal intensification) had a significant, although transient, impact on porewater salinity following storms at both sites, but most site conditions (nutrient concentrations, sediment moisture, and temperature) were unaffected. Extreme drought led to a subtle change in microbial community structure, but most ecosystem functions (primary productivity, litter decomposition, and greenhouse gas fluxes) were not affected by precipitation changes. The absence of ecosystem function change indicates functional redundancy (under extreme drought) and resistance (under doubled precipitation and seasonal intensification) exist in the microbial community. Our findings demonstrate that salt marsh ecosystems can maintain function (including ecosystem services like carbon sequestration) under even the most extreme precipitation change scenarios, due to resistance, resilience, and functional redundancy in the underlying microbial community.Spartina patens -
Abstract An accelerating global rate of sea level rise (SLR), coupled with direct human impacts to coastal watersheds and shorelines, threatens the continued survival of salt marshes. We developed a new landscape‐scale numerical model of salt marsh evolution and applied it to marshes in the Plum Island Estuary (Massachusetts, U.S.A.), a sediment‐deficient system bounded by steep uplands. To capture complexities of vertical accretion across the marsh platform, we employed a novel approach that incorporates spatially variable suspended sediment concentrations and biomass of multiple plant species as functions of elevation and distance from sediment sources. The model predicts a stable areal extent of Plum Island marshes for a variety of SLR scenarios through 2100, where limited marsh drowning is compensated by limited marsh migration into adjacent uplands. Nevertheless, the model predicts widespread conversion of high marsh vegetation to low marsh vegetation, and accretion deficits that indicate eventual marsh drowning. Although sediment‐deficient marshes bounded by steep uplands are considered extremely vulnerable to SLR, our results highlight that marshes with high elevation capital can maintain their areal extent for decades to centuries even under conditions in which they will inevitably drown.