skip to main content


Title: Assessing Salt Marsh Vulnerability Using High-Resolution Hyperspectral Imagery
Change in the coastal zone is accelerating with external forcing by sea-level rise, nutrient loading, drought, and over-harvest, leading to significant stress on the foundation plant species of coastal salt marshes. The rapid evolution of marsh state induced by these drivers makes the ability to detect stressors prior to marsh loss important. However, field work in coastal salt marshes can be challenging due to limited access and their fragile nature. Thus, remote sensing approaches hold promise for rapid and accurate determination of marsh state across multiple spatial scales. In this study, we evaluated the use of remote sensing tools to detect three dominant stressors on Spartina alterniflora. We took advantage of a barrier island salt marsh chronosequence in Virginia, USA, where marshes of different ages and level of stressor exist side by side. We collected hyperspectral imagery of plants along with salinity, sediment redox potential, and foliar nitrogen content in the field. We also conducted a greenhouse study where we manipulated environmental conditions. We found that models developed for stressors based on plant spectral response correlated well with salinity and foliar nitrogen within the greenhouse and field data, but were not transferable from lab to field, likely due to the limited range of conditions explored within the greenhouse experiments and the coincidence of multiple stressors in the field. This study is an important step towards the development of a remote sensing tool for tracking of ecosystem development, marsh health, and future ecosystem services.  more » « less
Award ID(s):
1832221
NSF-PAR ID:
10197021
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
18
ISSN:
2072-4292
Page Range / eLocation ID:
2938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The rapid human‐driven changes in the environment during the Anthropocene have placed extreme stress on many plants and animals. Beneficial interactions with microorganisms may be crucial for ameliorating these stressors and facilitating the ecosystem services host organisms provide. Foliar endophytes, microorganisms that reside within leaves, are found in essentially all plants and can provide important benefits (e.g., enhanced drought tolerance or resistance to herbivory). However, it remains unclear how important the legacy effects of the abiotic stressors that select on these microbiomes are for affecting the degree of stress amelioration provided to their hosts. To elucidate foliar endophytes' role in host‐plant salt tolerance, especially if salinity experienced in the field selects for endophytes that are better suited to improve the salt tolerance of their hosts, we combined field collections of 90 endophyte communities from 30 sites across the coastal Everglades with a manipulative growth experiment assessing endophyte inoculation effects on host‐plant performance. Specifically, we grew >350 red mangrove (Rhizophora mangle) seedlings in a factorial design that manipulated the salinity environment the seedlings experienced (freshwater vs. saltwater), the introduction of field‐collected endophytes (live vs. sterilized inoculum), and the legacy of salinity stress experienced by these introduced endophytes, ranging from no salt stress (0 parts per thousand [ppt] salinity) to high salt stress (40 ppt) environments. We found that inoculation with field‐collected endophytes significantly increased mangrove performance across almost all metrics examined (15%–20% increase on average), and these beneficial effects typically occurred when the endophytes were grown in saltwater. Importantly, our study revealed the novel result that endophyte‐conferred salinity tolerance depended on microbiome salinity legacy in a key coastal foundation species. Salt‐stressed mangroves inoculated with endophyte microbiomes from high‐salinity environments performed, on average, as well as plants grown in low‐stress freshwater, while endophytes from freshwater environments did not relieve host salinity stress. Given the increasing salinity stress imposed by sea level rise and the importance of foundation species like mangroves for ecosystem services, our results indicate that consideration of endophytic associations and their salinity legacy may be critical for the successful restoration and management of coastal habitats.

     
    more » « less
  2. Rapid habitat changes are occuring in salt marshes located in the Northeastern United States, including expansion of ponded areas on the marsh platform, die off of coastal forests, and subsequent colonization of 'ghost forests' by marsh vegetation. This work focuses on two main areas: (1) environmental conditions along the marsh forest border undergoing rapid transitions; and (2) environmental conditions and plant stress in marsh platforms with extensive ponding, with three study sites: in Long Island and Southern New England, where there are often significant slope breaks along the upland (slope ~0.01), and in southern New Jersey on the Atlantic Coastal plan (slope ~0.003). To better understand drivers of environmental change in marsh-forest borders undergoing rapid transitions, we measured shallow groundwater levels,  soil salinity, and forest health and structure along the salt marsh-upland border at three sites with varying slopes using installation of shallow groundwater wells, drone imagery and associated image processing, and geophysical methods. To better understand drivers of environmental change on the marsh platform, we measured used piezometers to understand vertical gradients in marsh groundwater levels, and measured photosynthesis and plant biomass and used drone imagery to map plant stress indices, as indicators of plant stress. While we anticipate that this data will be published in journal articles of the next 2 years, we archive collected data to facilitated data sharing, as required by NSF. 
    more » « less
  3. null (Ed.)
    Abstract. Sea-level rise, saltwater intrusion, and wave erosion threaten coastal marshes, but the influence of salinity on marsh erodibility remains poorly understood. We measured the shear strength of marsh soils along a salinity and biodiversity gradient in the York River estuary in Virginia to assess the direct and indirect impacts of salinity on potential marsh erodibility. We found that soil shear strength was higher in monospecific salt marshes (5–36 kPa) than in biodiverse freshwater marshes (4–8 kPa), likely driven by differences in belowground biomass. However, we also found that shear strength at the marsh edge was controlled by sediment characteristics, rather than vegetation or salinity, suggesting that inherent relationships may be obscured in more dynamic environments. Our results indicate that York River freshwater marsh soils are weaker than salt marsh soils, and suggest that salinization of these freshwater marshesmay lead to simultaneous losses in biodiversity and erodibility. 
    more » « less
  4. Abstract

    Changing precipitation patterns are predicted to alter ecosystem structure and function with potential carbon cycle feedbacks to climate change. Influenced by both land and sea, salt marshes are unique ecosystems and their productivity and respiration responses to precipitation change differ from those observed in terrestrial ecosystems. How salt marsh greenhouse gas fluxes and sediment microbial communities will respond to climate‐induced precipitation changes is largely unknown. We conducted 1‐year precipitation manipulation experiments in theSpartina patens(high marsh) zone of two salt marshes and quantified ecosystem functions at both and microbial community structure at one. Precipitation treatments (doubled rainfall, extreme drought, and seasonal intensification) had a significant, although transient, impact on porewater salinity following storms at both sites, but most site conditions (nutrient concentrations, sediment moisture, and temperature) were unaffected. Extreme drought led to a subtle change in microbial community structure, but most ecosystem functions (primary productivity, litter decomposition, and greenhouse gas fluxes) were not affected by precipitation changes. The absence of ecosystem function change indicates functional redundancy (under extreme drought) and resistance (under doubled precipitation and seasonal intensification) exist in the microbial community. Our findings demonstrate that salt marsh ecosystems can maintain function (including ecosystem services like carbon sequestration) under even the most extreme precipitation change scenarios, due to resistance, resilience, and functional redundancy in the underlying microbial community.

     
    more » « less
  5. Abstract

    An accelerating global rate of sea level rise (SLR), coupled with direct human impacts to coastal watersheds and shorelines, threatens the continued survival of salt marshes. We developed a new landscape‐scale numerical model of salt marsh evolution and applied it to marshes in the Plum Island Estuary (Massachusetts, U.S.A.), a sediment‐deficient system bounded by steep uplands. To capture complexities of vertical accretion across the marsh platform, we employed a novel approach that incorporates spatially variable suspended sediment concentrations and biomass of multiple plant species as functions of elevation and distance from sediment sources. The model predicts a stable areal extent of Plum Island marshes for a variety of SLR scenarios through 2100, where limited marsh drowning is compensated by limited marsh migration into adjacent uplands. Nevertheless, the model predicts widespread conversion of high marsh vegetation to low marsh vegetation, and accretion deficits that indicate eventual marsh drowning. Although sediment‐deficient marshes bounded by steep uplands are considered extremely vulnerable to SLR, our results highlight that marshes with high elevation capital can maintain their areal extent for decades to centuries even under conditions in which they will inevitably drown.

     
    more » « less