We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in
Applying
We show that certain singular structures (Hölderian cusps and mild divergences) are transported by the flow of homeomorphisms generated by an Osgood velocity field. The structure of these singularities is related to the modulus of continuity of the velocity and the results are shown to be sharp in the sense that slightly more singular structures cannot generally be propagated. For the 2D Euler equation, we prove that certain singular structures are preserved by the motion, e.g. a system of
We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in
Applying
Let us fix a prime
We study the singular set in the thin obstacle problem for degenerate parabolic equations with weight
In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the velocity is in
We study the sparsity of the solutions to systems of linear Diophantine equations with and without non-negativity constraints. The sparsity of a solution vector is the number of its nonzero entries, which is referred to as the