Forecasting rates of forest succession at landscape scales will aid global efforts to restore tree cover to millions of hectares of degraded land. While optical satellite remote sensing can detect regional land cover change, quantifying forest structural change is challenging. We developed a state‐space modeling framework that applies Landsat satellite data to estimate variability in rates of natural regeneration between sites in a tropical landscape. Our models work by disentangling measurement error in Landsat‐derived spectral reflectance from process error related to successional variability. We applied our modeling framework to rank rates of forest succession between 10 naturally regenerating sites in Southwestern Panama from about 2001 to 2015 and tested how different models for measurement error impacted forecast accuracy, ecological inference, and rankings of successional rates between sites. We achieved the greatest increase in forecasting accuracy by adding intra‐annual phenological variation to a model based on Landsat‐derived normalized difference vegetation index (NDVI). The best‐performing model accounted for inter‐ and intra‐annual noise in spectral reflectance and translated NDVI to canopy height via Landsat–lidar fusion. Modeling forest succession as a function of canopy height rather than NDVI also resulted in more realistic estimates of forest state during early succession, including greater confidence in rank order of successional rates between sites. These results establish the viability of state‐space models to quantify ecological dynamics from time series of space‐borne imagery. State‐space models also provide a statistical approach well‐suited to fusing high‐resolution data, such as airborne lidar, with lower‐resolution data that provides better temporal and spatial coverage, such as the Landsat satellite record. Monitoring forest succession using satellite imagery could play a key role in achieving global restoration targets, including identifying sites that will regain tree cover with minimal intervention.
more » « less- PAR ID:
- 10378163
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecological Applications
- Volume:
- 31
- Issue:
- 1
- ISSN:
- 1051-0761
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Improving high-resolution (meter-scale) mapping of snow-covered areas in complex and forested terrains is critical to understanding the responses of species and water systems to climate change. Commercial high-resolution imagery from Planet Labs, Inc. (Planet, San Francisco, CA, USA) can be used in environmental science, as it has both high spatial (0.7–3.0 m) and temporal (1–2 day) resolution. Deriving snow-covered areas from Planet imagery using traditional radiometric techniques have limitations due to the lack of a shortwave infrared band that is needed to fully exploit the difference in reflectance to discriminate between snow and clouds. However, recent work demonstrated that snow cover area (SCA) can be successfully mapped using only the PlanetScope 4-band (Red, Green, Blue and NIR) reflectance products and a machine learning (ML) approach based on convolutional neural networks (CNN). To evaluate how additional features improve the existing model performance, we: (1) build on previous work to augment a CNN model with additional input data including vegetation metrics (Normalized Difference Vegetation Index) and DEM-derived metrics (elevation, slope and aspect) to improve SCA mapping in forested and open terrain, (2) evaluate the model performance at two geographically diverse sites (Gunnison, Colorado, USA and Engadin, Switzerland), and (3) evaluate the model performance over different land-cover types. The best augmented model used the Normalized Difference Vegetation Index (NDVI) along with visible (red, green, and blue) and NIR bands, with an F-score of 0.89 (Gunnison) and 0.93 (Engadin) and was found to be 4% and 2% better than when using canopy height- and terrain-derived measures at Gunnison, respectively. The NDVI-based model improves not only upon the original band-only model’s ability to detect snow in forests, but also across other various land-cover types (gaps and canopy edges). We examined the model’s performance in forested areas using three forest canopy quantification metrics and found that augmented models can better identify snow in canopy edges and open areas but still underpredict snow cover under forest canopies. While the new features improve model performance over band-only options, the models still have challenges identifying the snow under trees in dense forests, with performance varying as a function of the geographic area. The improved high-resolution snow maps in forested environments can support studies involving climate change effects on mountain ecosystems and evaluations of hydrological impacts in snow-dominated river basins.more » « less
-
Abstract In post‐fire Siberian larch forests, where tree density can vary within a burn perimeter, shrubs constitute a substantial portion of the vegetation canopy. Leaf area index (LAI), defined as the one‐sided total green leaf area per unit ground surface area, is useful for characterizing variation in plant canopies. We estimated LAI with allometry for trees and tall shrubs (>0.5 and <1.5 m) across 26 sites with varying tree stem density (0.05–3.3 stems/m2) and canopy cover (4.6%–76.9%) in a uniformly‐aged mature Siberian larch forest that regenerated following a fire ∼75 years ago. We investigated relationships between tree density, tree LAI, and tall shrub LAI, and between LAI and satellite observations of Normalized Difference and Enhanced Vegetation Indices (NDVI and EVI). Across the density gradient, tree LAI increases with increasing tree density, while tall shrub LAI decreases, exhibiting no patterns in combined tree‐shrub LAI. We also found significant positive relationships between tall shrub LAI and NDVI/EVI from PlanetScope and Landsat imagery. These findings suggest that tall shrubs compensate for lower tree LAI in tree canopy gaps, forming a canopy with contiguous combined tree‐shrub LAI across the density gradient. Our findings suggest that NDVI and EVI are more sensitive to variation in tall shrub canopies than variation in tree canopies or combined tree‐shrub canopies in these ecosystems. The results improve our understanding of the relationships between forest density and tree and shrub leaf area and have implications for interpreting spatial variability in LAI, NDVI, and EVI in Siberian boreal forests.
-
Accurate measurements of terrain elevation are crucial for many ecological applications. In this study, we sought to assess new global three-dimensional Earth observation data acquired by the spaceborne Light Detection and Ranging (LiDAR) missions Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI). For this, we examined the “ATLAS/ICESat-2 L3A Land and Vegetation Height”, version 5 (20 × 14 m and 100 × 14 m segments) and the “GEDI Level 2A Footprint Elevation and Height Metrics”, version 2 (25 m circle). We conducted our analysis across four land cover classes (bare soil, herbaceous, forest, savanna), and six forest types (temperate broad-leaved, temperate needle-leaved, temperate mixed, tropical upland, tropical floodplain, and tropical secondary forest). For assessment of terrain elevation estimates from spaceborne LiDAR data we used high resolution airborne data. Our results indicate that both LiDAR missions provide accurate terrain elevation estimates across different land cover classes and forest types with mean error less than 1 m, except in tropical forests. However, using a GEDI algorithm with a lower signal end threshold (e.g., algorithm 5) can improve the accuracy of terrain elevation estimates for tropical upland forests. Specific environmental parameters (terrain slope, canopy height and canopy cover) and sensor parameters (GEDI degrade flags, terrain estimation algorithm; ICESat-2 number of terrain photons, terrain uncertainty) can be applied to improve the accuracy of ICESat-2 and GEDI-based terrain estimates. Although the goodness-of-fit statistics from the two spaceborne LiDARs are not directly comparable since they possess different footprint sizes (100 × 14 m segment or 20 × 14 m segment vs. 25 m circle), we observed similar trends on the impact of terrain slope, canopy cover and canopy height for both sensors. Terrain slope strongly impacts the accuracy of both ICESat-2 and GEDI terrain elevation estimates for both forested and non-forested areas. In the case of GEDI the impact of slope is, however, partly caused by horizontal geolocation error. Moreover, dense canopies (i.e., canopy cover higher than 90%) affect the accuracy of spaceborne LiDAR terrain estimates, while canopy height does not, when considering samples over flat terrains. Our analysis of the accuracy and precision of current versions of spaceborne LiDAR products for different vegetation types and environmental conditions provides insights on parameter selection and estimated uncertainty to inform users of these key global datasets.more » « less
-
Abstract Changes in vegetation productivity based on normalized difference vegetation index (NDVI) have been reported from Arctic regions. Most studies use very coarse spatial resolution remote sensing data that cannot isolate landscape level factors. For example, on Yamal Peninsula in West Siberia enhanced willow growth has been linked to widespread landslide activity, but the effect of landslides on regional NDVI dynamics is unknown. Here we apply a novel satellite-based NDVI analysis to investigate the vegetation regeneration patterns of active-layer detachments following a major landslide event in 1989. We analyzed time series data of Landsat and very high-resolution (VHR) imagery from QuickBird-2 and WorldView-2 and 3 characterizing a study area of ca. 35 km2. Landsat revealed that natural regeneration of low Arctic tundra progressed rapidly during the first two decades after the landslide event. However, during the past decade, the difference between landslide shear surfaces and surrounding areas remained relatively unchanged despite the advance of vegetation succession. Time series also revealed that NDVI generally declined since 2013 within the study area. The VHR imagery allowed detection of NDVI change ‘hot-spots’ that included temporary degradation of vegetation cover, as well as new and expanding thaw slumps, which were too small to be detected from Landsat satellite data. Our study demonstrates that landslides can have pronounced and long-lasting impacts on tundra vegetation. Thermokarst landslides and associated impacts on vegetation will likely become increasingly common in NW Siberia and other Arctic regions with continued warming.
-
Abstract Context Land use history of urban forests impacts present-day soil structure, vegetation, and ecosystem function, yet is rarely documented in a way accessible to planners and land managers.
Objectives To (1) summarize historical land cover of present-day forest patches in Baltimore, MD, USA across land ownership categories and (2) determine whether social-ecological characteristics vary by historical land cover trajectory.
Methods Using land cover classification derived from 1927 and 1953 aerial imagery, we summarized present-day forest cover by three land cover sequence classes: (1) Persistent forest that has remained forested since 1927, (2) Successional forest previously cleared for non-forest vegetation (including agriculture) that has since reforested, or (3) Converted forest that has regrown on previously developed areas. We then assessed present-day ownership and average canopy height of forest patches by land cover sequence class.
Results More than half of Baltimore City’s forest has persisted since at least 1927, 72% since 1953. About 30% has succeeded from non-forest vegetation during the past century, while 15% has reverted from previous development. A large proportion of forest converted from previous development is currently privately owned, whereas persistent and successional forest are more likely municipally-owned. Successional forest occurred on larger average parcels with the fewest number of distinct property owners per patch. Average tree canopy height was significantly greater in patches of persistent forest (mean = 18.1 m) compared to canopy height in successional and converted forest patches (16.6 m and 16.9 m, respectively).
Conclusions Historical context is often absent from urban landscape ecology but provides information that can inform management approaches and conservation priorities with limited resources for sustaining urban natural resources. Using historical landscape analysis, urban forest patches could be further prioritized for protection by their age class and associated ecosystem characteristics.