skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The materials tetrahedron has a “digital twin”
Abstract For over three decades, the materials tetrahedron has captured the essence of materials science and engineering with its interdependent elements of processing, structure, properties, and performance. As modern computational and statistical techniques usher in a new paradigm of data-intensive scientific research and discovery, the rate at which the field of materials science and engineering capitalizes on these advances hinges on collaboration between numerous stakeholders. Here, we provide a contemporary extension to the classic materials tetrahedron with a dual framework—adapted from the concept of a “digital twin”—which offers a nexus joining materials science and information science. We believe this high-level framework, the materials–information twin tetrahedra (MITT), will provide stakeholders with a platform to contextualize, translate, and direct efforts in the pursuit of propelling materials science and technology forward. Impact statement This article provides a contemporary reimagination of the classic materials tetrahedron by augmenting it with parallel notions from information science. Since the materials tetrahedron (processing, structure, properties, performance) made its first debut, advances in computational and informational tools have transformed the landscape and outlook of materials research and development. Drawing inspiration from the notion of a digital twin, the materials–information twin tetrahedra (MITT) framework captures a holistic perspective of materials science and engineering in the presence of modern digital tools and infrastructures. This high-level framework incorporates sustainability and FAIR data principles (Findable, Accessible, Interoperable, Reusable)—factors that recognize how systems impact and interact with other systems—in addition to the data and information flows that play a pivotal role in knowledge generation. The goal of the MITT framework is to give stakeholders from academia, industry, and government a communication tool for focusing efforts around the design, development, and deployment of materials in the years ahead. Graphic abstract  more » « less
Award ID(s):
1835677 1835648
PAR ID:
10378185
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
MRS Bulletin
Volume:
47
Issue:
4
ISSN:
0883-7694
Page Range / eLocation ID:
379 to 388
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid evolution of modern manufacturing systems is driven by the integration of emerging metaverse technologies such as artificial intelligence (AI), digital twin (DT), and different forms of extended reality (XR) like virtual reality (VR), augmented reality (AR), and mixed reality (MR). These advances confront manufacturing workers with complex and evolving environments that demand digital literacy for problem solving in the future workplace. However, manufacturing industry faces a critical shortage of skilled workforce with digital literacy in the world. Further, global pandemic has significantly changed how people work and collaborate digitally and remotely. There is an urgent need to rethink digital platformization and leverage emerging technologies to propel industrial evolution toward human-centered manufacturing metaverse (MfgVerse). This paper presents a forward-looking perspective on the development of MfgVerse, highlighting current efforts in learning factory, cognitive digital twinning, and the new sharing economy of manufacturing-as-a-service (MaaS). MfgVerse is converging into multiplex networks, including a social network of human stakeholders, an interconnected network of manufacturing things or agents (e.g., machines, robots, facilities, material handling systems), a network of digital twins of physical things, as well as auxiliary networks of sales, supply chain, logistics, and remanufacturing systems. We also showcase the design and development of a virtual learning factory for workforce training. Finally, future directions, challenges, and opportunities are discussed for human-centered manufacturing metaverse. We hope this work helps stimulate more comprehensive studies and in-depth research efforts to advance MfgVerse technologies. 
    more » « less
  2. Surgical data science is devoted to enhancing the quality, safety, and efficacy of interventional healthcare. While the use of powerful machine learning algorithms is becoming the standard approach for surgical data science, the underlying end-to-end task models directly infer high-level concepts (e.g., surgical phase or skill) from low-level observations (e.g., endoscopic video). This end-to-end nature of contemporary approaches makes the models vulnerable to non-causal relationships in the data and requires the re-development of all components if new surgical data science tasks are to be solved. The digital twin (DT) paradigm, an approach to building and maintaining computational representations of real-world scenarios, offers a framework for separating low-level processing from high-level inference. In surgical data science, the DT paradigm would allow for the development of generalist surgical data science approaches on top of the universal DT representation, deferring DT model building to low-level computer vision algorithms. In this latter effort of DT model creation, geometric scene understanding plays a central role in building and updating the digital model. In this work, we visit existing geometric representations, geometric scene understanding tasks, and successful applications for building primitive DT frameworks. Although the development of advanced methods is still hindered in surgical data science by the lack of annotations, the complexity and limited observability of the scene, emerging works on synthetic data generation, sim-to-real generalization, and foundation models offer new directions for overcoming these challenges and advancing the DT paradigm. 
    more » « less
  3. We are rapidly approaching a future in which cancer patient digital twins will reach their potential to predict cancer prevention, diagnosis, and treatment in individual patients. This will be realized based on advances in high performance computing, computational modeling, and an expanding repertoire of observational data across multiple scales and modalities. In 2020, the US National Cancer Institute, and the US Department of Energy, through a trans-disciplinary research community at the intersection of advanced computing and cancer research, initiated team science collaborative projects to explore the development and implementation of predictive Cancer Patient Digital Twins. Several diverse pilot projects were launched to provide key insights into important features of this emerging landscape and to determine the requirements for the development and adoption of cancer patient digital twins. Projects included exploring approaches to using a large cohort of digital twins to perform deep phenotyping and plan treatments at the individual level, prototyping self-learning digital twin platforms, using adaptive digital twin approaches to monitor treatment response and resistance, developing methods to integrate and fuse data and observations across multiple scales, and personalizing treatment based on cancer type. Collectively these efforts have yielded increased insights into the opportunities and challenges facing cancer patient digital twin approaches and helped define a path forward. Given the rapidly growing interest in patient digital twins, this manuscript provides a valuable early progress report of several CPDT pilot projects commenced in common, their overall aims, early progress, lessons learned and future directions that will increasingly involve the broader research community. 
    more » « less
  4. By virtue of their extensive potential in energy conversion and storage, catalysis, photocatalysis, adsorption, separation and life science applications, significant interest has been devoted to the design and synthesis of hierarchical porous materials. The main factors which determines the performance of hierarchical porous materials for an application include structure (pore size, porosity, tortuosity), materials (scaffold, dopants) and operating conditions. Traditionally, these hierarchical porous materials are synthesised and fabricated through a manual trial and error procedure, which is an expensive and time-consuming approach. However, there have been significant advances in mathematical, computational and engineering tools toward solving and optimising multiscale descriptions of physical phenomena. This motivates a computational-aided framework to tailor the fabrication of hierarchical porous materials to be optimised in performance for their specific application. In this work, a reactive-transport system in porous media is modelled using computational fluid dynamics. While microscale descriptions are too computationally expensive and macroscale models fail to accurately describe a physical phenomena in specific parts of computational domains, hybrid - or multiscale - algorithms, are used. Using the information provided by the numerical simulation, multiscale model-based design of experiments are developed to optimise the material’s performance on their particular usage. It is proposed that hierarchical multiscale modeling offers a systematic framework for identification of the important scales and parameters where one should focus experimental efforts on. 
    more » « less
  5. Design is a human activity that encompasses a broad array of tasks. In engineering design, individual efforts can be aggregated into teams to maximize collective progress. Effective teamwork, however, requires extensive management, organization and communication. Furthermore, modern challenges encompass complicated multi-disciplinary problems with faster schedules, fewer resources, and greater demands. Design, as a process, can be dissected into characteristic phases. Within each phase, design solutions are gradually developed. Technological tools have prioritized the structured analyses of the detailed and final design phases and have proven to be powerful multipliers for effective design efforts. It has long been the case, however, that major commitments of intangible resources are made as a result of efforts in the less emphasized earlier phases. These commitments and lack of modern toolsets for requirement development and conceptual design activities materialize as major sources of design pitfalls, both in industry and on student design projects. This paper presents a digital Ecosystem for Engineering Design Learning as a comprehensive, yet flexible, framework for capstone design teams. The digital Ecosystem has been developed as a feasible technology to bolster student information management, teamwork, communication, and proficiency in fundamental design principles, and as a technology capable of alleviating rework and process-related productivity interruptions. Its primary innovation, for capstone applications, is the ability to assess design work automatically against the design process, as well as against ABET compliant learning objectives, and provide prompt advisories in case of design oversights. The digital Ecosystem is compared to tools for project management, team communication, and requirement management. 
    more » « less