skip to main content

Title: Adaptive optics and VLBA imaging observations of recoiling supermassive black hole candidates
ABSTRACT

We present the results of high-resolution adaptive optics imaging observations of four kinematically identified recoiling supermassive black hole (rSMBH) candidates. Ellipse fitting was carried out to measure the spatial offset between the active galactic nucleus (AGN) and the centre of the host galaxy. Two rSMBH candidates (J1713 + 3523 and J2054 + 0049) are found to be offset AGN. However, the Very Long Baseline Array 1.5 GHz continuum imaging observation and spectral decomposition of the [O iii]5007 line suggest that J1713 + 3523 is a dual AGN and its spatial offset is not due to a recoil event. The spatial offset between the AGN and the centre of the host galaxy in J2054 + 0049 is 0.06 ± 0.01 arcsec (201 ± 22 pc). Spectral decomposition of J2054 + 0049 also suggests that it could be a dual AGN system and the measured spatial offset may not be due to a recoil event.

Authors:
; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10378292
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
3
Page Range or eLocation-ID:
p. 4081-4091
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We examine the dual [both black hole (BH) active] and offset (one BH active and in distinct galaxies) active galactic nucleus (AGN) population (comprising ∼ 2000 pairs at $0.5\, \text{kpc}\lesssim \Delta r\lt 30\, \text{kpc}$) at z = 2 ∼ 3 in the ASTRID simulation covering (360 cMpc)3. The dual (offset) AGN make up 3.0(0.5) per cent of all AGN at z = 2. The dual fraction is roughly constant while the offset fraction increases by a factor of 10 from z = 4 ∼ 2. Compared with the full AGN population, duals are characterized by low MBH/M* ratios, high specific star formation rates (sSFR) of $\sim 1\, \text{Gyr}^{-1}$, and high Eddington ratios (∼0.05, double that of single AGN). Dual AGNs are formed in major galaxy mergers (typically involving $M_\text{halo}\lt 10^{13}\, M_\odot$), with simular-mass BHs. At small separations (when host galaxies are in the late phase of the merger), duals become 2 ∼ 8 times brighter (albeit more obscured) than at larger separations. 80  per cent of the bright, close duals would merge within $\sim 500\, \text{Myr}$. Notably, the initially less-massive BHs in duals frequently become the brighter AGN during galaxy mergers. In offset AGN, the active BH is typically ≳ 10 times more massive than its non-activemore »counterpart and than most BHs in duals. Offsets are predominantly formed in minor galaxy mergers with the active BH residing in the centre of massive haloes ($M_\text{ halo}\sim 10^{13-14}\, \mathrm{M}_\odot$). In these deep potentials, gas stripping is common and the secondary quickly deactivates. The stripping also leads to inefficient orbital decay amongst offsets, which stall at $\Delta r\sim 5\, \text{kpc}$ for a few hundred Myrs.

    « less
  2. Abstract

    Dual active galactic nuclei (AGNs), which are the manifestation of two actively accreting supermassive black holes (SMBHs) hosted by a pair of merging galaxies, are a unique laboratory for studying the physics of SMBH feeding and feedback during an indispensable stage of galaxy evolution. In this work, we present NOEMA CO(2–1) observations of seven kiloparsec-scale dual-AGN candidates drawn from a recent Chandra survey of low redshift, optically classified AGN pairs. These systems are selected because they show unexpectedly low 2–10 keV X-ray luminosities for their small physical separations signifying an intermediate-to-late stage of merger. Circumnuclear molecular gas traced by the CO(2–1) emission is significantly detected in six of the seven pairs and 10 of the 14 nuclei, with an estimated mass ranging between (0.2–21) × 109M. The primary nuclei, i.e., the ones with the higher stellar velocity dispersion, tend to have a higher molecular gas mass than the secondary. Most CO-detected nuclei show a compact morphology, with a velocity field consistent with a kiloparsec-scale rotating structure. The inferred hydrogen column densities range between 5 × 1021–2 × 1023cm−2, but mostly at a few times 1022cm−2, in broad agreement with those derived from X-ray spectral analysis. Together with the relativelymore »weak mid-infrared emission, the moderate column density argues against the prevalence of heavily obscured, intrinsically luminous AGNs in these seven systems, but favors a feedback scenario in which AGN activity triggered by a recent pericentric passage of the galaxy pair can expel circumnuclear gas and suppress further SMBH accretion.

    « less
  3. Abstract

    We test the merger-induced dual active galactic nuclei (dAGNs) paradigm using a sample of 35 radio galaxy pairs from the Sloan Digital Sky Survey Stripe 82 field. Using Keck optical spectroscopy, we confirm 21 pairs have consistent redshifts, constituting kinematic pairs; the remaining 14 pairs are line-of-sight projections. We classify the optical spectral signatures via emission line ratios, equivalent widths, and excess of radio power above star formation predicted outputs. We find six galaxies are classified as LINERs and seven are AGN/starburst composites. Most of the LINERs are retired galaxies, while the composites likely have AGN contribution. All of the kinematic pairs exhibit radio power more than 10× above the level expected from just star formation, suggestive of a radio AGN contribution. We also analyze high-resolution (0.″3) imaging at 6 GHz from the NSF’s Karl G. Jansky Very Large Array for 17 of the kinematic pairs. We find six pairs (two new, four previously known) host two separate radio cores, confirming their status as dAGNs. The remaining 11 pairs contain single AGNs, with most exhibiting prominent jets/lobes overlapping their companion. Our final census indicates a dAGN duty cycle slightly higher than predictions of purely stochastic fueling, although a largermore »sample (potentially culled from VLASS) is needed to fully address the dAGN fraction. We conclude that while dAGNs in the Stripe 82 field are rare, the merger process plays some role in their triggering and it facilitates low to moderate levels of accretion.

    « less
  4. Abstract

    The COSMOS field has been extensively observed by most major telescopes, including Chandra, HST, and Subaru. HST imaging boasts very high spatial resolution and is used extensively in morphological studies of distant galaxies. Subaru provides lower spatial resolution imaging than HST but a substantially wider field of view with greater sensitivity. Both telescopes provide near-infrared imaging of COSMOS. Successful morphological fitting of Subaru data would allow us to measure morphologies of over 104known active galactic nucleus (AGN) hosts, accessible through Subaru wide-field surveys, currently not covered by HST. The morphological parameters indicate the types of galaxies that host AGNs. For 4016 AGNs between 0.03 <z< 6.5, we study the morphology of their galaxy hosts using GALFIT, fitting components representing the AGN and host galaxy simultaneously using thei-band imaging from both HST and Subaru. Comparing the fits for the differing telescope spatial resolutions and image signal-to-noise ratios, we identify parameter regimes for which there is strong disagreement between distributions of fitted parameters for HST and Subaru. In particular, the Sérsic index values strongly disagree between the two sets of data, including sources at lower redshifts. In contrast, the measured magnitude and radius parameters show reasonable agreement. Additionally, large variations inmore »the Sérsic index have little effect on theχν2of each fit, whereas variations in other parameters have a more significant effect. These results indicate that the Sérsic index distributions of high-redshift galaxies that host AGNs imaged at ground-based spatial resolution are not reliable indicators of galaxy type and should be interpreted with caution.

    « less
  5. Context. The interaction between active galactic nuclei (AGNs) and their host galaxies is scarcely resolved. Narrow-line Seyfert 1 (NLS1) galaxies are believed to represent AGN at early stages of their evolution and to allow one to observe feeding and feedback processes at high black hole accretion rates. Aims. We aim to constrain the properties of the ionised gas outflow in Mrk 1044, a nearby super-Eddington accreting NLS1. Based on the outflow energetics and the associated timescales, we estimate the outflow’s future impact on the ongoing host galaxy star formation on different spatial scales. Methods. We applied a spectroastrometric analysis to observations of Mrk 1044’s nucleus obtained with the adaptive-optics-assisted narrow field mode of the VLT/MUSE instrument. This allowed us to map two ionised gas outflows traced by [O  III ], which have velocities of −560 ± 20 km s −1 and −144 ± 5 km s −1 . Furthermore, we used an archival spectrum from the Space Telescope Imaging Spectrograph on HST to identify two Ly- α absorbing components that escape from the centre with approximately twice the velocity of the ionised gas components. Results. Both [O  III ] outflows are spatially unresolved and located close to the AGN (< 1 pc). They havemore »gas densities higher than 10 5 cm −3 , which implies that the BPT diagnostic cannot be used to constrain the underlying ionisation mechanism. We explore whether an expanding shell model can describe the velocity structure of Mrk 1044’s multi-phase outflow. In the ionised gas emission, an additional outflowing component, which is spatially resolved, is present. It has a velocity of −211 ± 22 km s −1 and a projected size of 4.6 ± 0.6 pc. Our kinematic analysis suggests that significant turbulence is present in the interstellar medium around the nucleus, which may lead to a condensation rain, potentially explaining the efficient feeding of Mrk 1044’s AGN. Within the innermost 0.5″ (160 pc), we detect modest star formation hidden by the beam-smeared emission from the outflow. Conclusions. We estimate that the multi-phase outflow was launched < 10 4 yr ago. Together with the star formation in the vicinity of the nucleus, this suggests that Mrk 1044’s AGN phase started only recently. The outflow carries enough mass and energy to impact the host galaxy star formation on different spatial scales, highlighting the complexity of the AGN feeding and feedback cycle in its early stages.« less