skip to main content


Title: Comparison of Tools for Digitally Tracking Changes in Text
Tracking changes in digital texts is a longstanding interface challenge, as early digital technologies left no recorded traces of alterations. Currently, two key categories of tools track text changes: code editing and word processing tools. Each has implemented different interface patterns to accomplish several goals: attributing change authorship, tracking the time of change, recording the change action taken, and specifying the location and content of the change. While some visual characteristics of change tracking are consistent across all tools, there are significant differences in change representation divided along the tool-type line, that may reflect their specific cultures of use. Overall, however, there is a limited range of visual methods for representing changes to digital text over time.  more » « less
Award ID(s):
1940670 1940679 1940713
NSF-PAR ID:
10378432
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
66
Issue:
1
ISSN:
2169-5067
Page Range / eLocation ID:
1365 to 1369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  2. null (Ed.)
    Table2Text systems generate textual output based on structured data utilizing machine learning. These systems are essential for fluent natural language interfaces in tools such as virtual assistants; however, left to generate freely these ML systems often produce misleading or unexpected outputs. GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text. The tool utilizes a deep learning model designed with explicit control states. These controls allow users to globally constrain model generations, without sacrificing the representation power of the deep learning models. The visual interface makes it possible for users to interact with AI systems following a Refine-Forecast paradigm to ensure that the generation system acts in a manner human users find suitable. We report multiple use cases on two experiments that improve over uncontrolled generation approaches, while at the same time providing fine-grained control. A demo and source code are available at https://genni.vizhub.ai. 
    more » « less
  3. Spatial ability is the ability to generate, store, retrieve, and transform visual information to mentally represent a space and make sense of it. This ability is a critical facet of human cognition that affects knowledge acquisition, productivity, and workplace safety. Although having improved spatial ability is essential for safely navigating and perceiving a space on earth, it is more critical in altered environments of other planets and deep space, which may pose extreme and unfamiliar visuospatial conditions. Such conditions may range from microgravity settings with the misalignment of body and visual axes to a lack of landmark objects that offer spatial cues to perceive size, distance, and speed. These altered visuospatial conditions may pose challenges to human spatial cognitive processing, which assists humans in locating objects in space, perceiving them visually, and comprehending spatial relationships between the objects and surroundings. The main goal of this paper is to examine if eye-tracking data of gaze pattern can indicate whether such altered conditions may demand more mental efforts and attention. The key dimensions of spatial ability (i.e., spatial visualization, spatial relations, and spatial orientation) are examined under the three simulated conditions: (1) aligned body and visual axes (control group); (2) statically misaligned body and visual axes (experiment group I); and dynamically misaligned body and visual axes (experiment group II). The three conditions were simulated in Virtual Reality (VR) using Unity 3D game engine. Participants were recruited from Texas A&M University student population who wore HTC VIVE Head-Mounted Displays (HMDs) equipped with eye-tracking technology to work on three spatial tests to measure spatial visualization, orientation, and relations. The Purdue Spatial Visualization Test: Rotations (PSVT: R), the Mental Cutting Test (MCT), and the Perspective Taking Ability (PTA) test were used to evaluate the spatial visualization, spatial relations, and spatial orientation of 78 participants, respectively. For each test, gaze data was collected through Tobii eye-tracker integrated in the HTC Vive HMDs. Quick eye movements, known as saccades, were identified by analyzing raw eye-tracking data using the rate of change of gaze position over time as a measure of mental effort. The results showed that the mean number of saccades in MCT and PSVT: R tests was statistically larger in experiment group II than in the control group or experiment group I. However, PTA test data did not meet the required assumptions to compare the mean number of saccades in the three groups. The results suggest that spatial relations and visualization may require more mental effort under dynamically misaligned idiotropic and visual axes than aligned or statically misaligned idiotropic and visual axes. However, the data could not reveal whether spatial orientation requires more/less mental effort under aligned, statically misaligned, and dynamically misaligned idiotropic and visual axes. The results of this study are important to understand how altered visuospatial conditions impact spatial cognition and how simulation- or game-based training tools can be developed to train people in adapting to extreme or altered work environments and working more productively and safely.

     
    more » « less
  4. Most programmers rely on visual tools (block-based editors, auto-indentation, bracket matching, syntax highlighting, etc.), which are inaccessible to visually-impaired programmers. While prior language-specific, downloadable tools have demonstrated benefits for the visually-impaired, we lack language-independent, cloud-based tools, both of which are critically needed. We present a new toolkit for building fully-accessible, browser-based programming environments for multiple languages. Given a parser that meets certain specifications, this toolkit will generate a block editor familiar to sighted users that also communicates the structure of a program using spoken descriptions, and allows for navigation using standard (accessible) keyboard shortcuts. This paper presents the toolkit and a first evaluation of it. While the toolkit allows for full editing of code, we chose to focus strictly on navigation for this evaluation, using the navigation-only study design of Baker, Milne and Ladner. Visually-impaired programmers completed several tasks with and without our tool, and we compared their results and experience. Users had improved accuracy when completing tasks, were significantly better able to orient when reading code, and felt better about completing the tasks when using the tool. Moreover, these improvements came with no significant change in task completion time over plain text, even for experienced programmers who navigate text using screen readers set to high words-per-minutes. 
    more » « less
  5. The continuing growth of scientific publications has posed a double-challenge to researchers, to not only grasp the overall research trends in a scientific domain, but also get down to research details embedded in a collection of core papers. Existing work on science mapping provides multiple tools to visualize research trends in domain on macro-level, and work from the digital humanities have proposed text visualization of documents, topics, sentences, and words on micro-level. However, existing micro-level text visualizations are not tailored for scientific paper corpus, and cannot support meso-level scientific reading, which aligns a set of core papers based on their research progress, before drilling down to individual papers. To bridge this gap, the present paper proposes LitStoryTeller+, an interactive system under a unified framework that can support both meso-level and micro-level scientific paper visual storytelling. More specifically, we use entities (concepts and terminologies) as basic visual elements, and visualize entity storylines across papers and within a paper borrowing metaphors from screen play. To identify entities and entity communities, named entity recognition and community detection are performed. We also employ a variety of text mining methods such as extractive text summarization and comparative sentence classification to provide rich textual information supplementary to our visualizations. We also propose a top-down story-reading strategy that best takes advantage of our system. Two comprehensive hypothetical walkthroughs to explore documents from the computer science domain and history domain with our system demonstrate the effectiveness of our story-reading strategy and the usefulness of LitStoryTeller+. 
    more » « less