Complex video queries can be answered by decomposing them into modular subtasks. However, existing video data management systems assume the existence of predefined modules for each subtask. We introduce VOCAL-UDF, a novel self-enhancing system that supports compositional queries over videos without the need for predefined modules. VOCAL-UDF automatically identifies and constructs missing modules and encapsulates them as user-defined functions (UDFs), thus expanding its querying capabilities. To achieve this, we formulate a unified UDF model that leverages large language models (LLMs) to aid in new UDF generation. VOCAL UDF handles a wide range of concepts by supporting both program-based UDFs (i.e., Python functions generated by LLMs) and distilled-model UDFs (lightweight vision models distilled from strong pretrained models). To resolve the inherent ambiguity in user intent, VOCAL-UDF generates multiple candidate UDFs and uses active learning to efficiently select the best one. With the self-enhancing capability, VOCAL-UDF significantly improves query performance across three video datasets.
more »
« less
VOCAL: Video Organization and Interactive Compositional AnaLytics
Current video database management systems (VDBMSs) fail to support the growing number of video datasets in diverse domains because these systems assume clean data and rely on pretrained models to detect known objects or actions. Existing systems also lack good support for compositional queries that seek events con- sisting of multiple objects with complex spatial and temporal rela- tionships. In this paper, we propose VOCAL, a vision of a VDBMS that supports efficient data cleaning, exploration and organization, and compositional queries, even when no pretrained model exists to extract semantic content. These techniques utilize optimizations to minimize the manual effort required of users.
more »
« less
- Award ID(s):
- 1703051
- PAR ID:
- 10378499
- Date Published:
- Journal Name:
- 12th Annual Conference on Innovative Data Systems Research (CIDR ’22)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Temporal grounding, also known as video moment retrieval, aims at locating video segments corresponding to a given query sentence. The compositional nature of natural language enables the localization beyond predefined events, posing a certain challenge to the compositional generalizability of existing methods. Recent studies establish the correspondence between videos and queries through a decompose-reconstruct manner to achieve compositional generalization. However, they only consider dominant primitives and build negative queries through random sampling and recombination, resulting in semantically implausible negatives that hinder the models from learning rational compositions. In addition, recent DETR-based methods still underperform in compositional temporal grounding, showing irrational saliency responses when given negative queries that have subtle differences from positive queries. To address these limitations, we first propose a large language modeldriven method for negative query construction, utilizing GPT-3.5 Turbo to generate semantically plausible hard negative queries. Subsequently, we introduce a coarse-to-fine saliency ranking strategy, which encourages the model to learn the multi-granularity semantic relationships between videos and hierarchical negative queries to boost compositional generalization. Extensive experiments on two challenging benchmarks validate the effectiveness and generalizability of our proposed method. Our code is available at https://github.com/zxccade/SHINE.more » « less
-
Temporal grounding, a.k.a video moment retrieval, aims at locating video segments corresponding to a given query sentence. The compositional nature of natural language enables the localization beyond predefined events, posing a certain challenge to the compositional generalizability of existing methods. Recent studies establish the correspondence between videos and queries through a decompose-reconstruct manner to achieve compositional generalization. However, they only consider dominant primitives and build negative queries through random sampling and recombination, resulting in semantically implausible negatives that hinder the models from learning rational compositions. In addition, recent DETR-based methods still underperform in compositional temporal grounding, showing irrational saliency responses when given negative queries that have subtle differences from positive queries. To address these limitations, we first propose a large language model-driven method for negative query construction, utilizing GPT-3.5-Turbo to generate semantically plausible hard negative queries. Subsequently, we introduce a coarse-to-fine saliency ranking strategy, which encourages the model to learn the multi-granularity semantic relationships between videos and hierarchical negative queries to boost compositional generalization. Extensive experiments on two challenging benchmarks validate the effectiveness and generalizability of our proposed method. Our code is available at this https URL.more » « less
-
Localizing video moments based on the movement patterns of objects is an important task in video analytics. Existing video analytics systems offer two types of querying interfaces based on natural language and SQL, respectively. However, both types of interfaces have major limitations. SQL-based systems require high query specification time, whereas natural language-based systems require large training datasets to achieve satisfactory retrieval accuracy. To address these limitations, we present SketchQL, a video database management system (VDBMS) for offline, exploratory video moment retrieval that is both easy to use and generalizes well across multiple video moment datasets. To improve ease-of-use, SketchQL features avisual query interfacethat enables users to sketch complex visual queries through intuitive drag-and-drop actions. To improve generalizability, SketchQL operates on object-tracking primitives that are reliably extracted across various datasets using pre-trained models. We present a learned similarity search algorithm for retrieving video moments closely matching the user's visual query based on object trajectories. SketchQL trains the model on a diverse dataset generated with a novel simulator, that enhances its accuracy across a wide array of datasets and queries. We evaluate SketchQL on four real-world datasets with nine queries, demonstrating its superior usability and retrieval accuracy over state-of-the-art VDBMSs.more » « less
-
Pervasive deployment of surveillance cameras today poses enormous scalability challenges to video analytics systems operating over many camera feeds. Currently, there are few indexing tools to organize video feeds beyond what is provided by a standard file system. Recent video analytic systems implement application-specific frame profiling and sampling techniques to reduce the number of raw videos processed, leveraging frame-level redundancy or manually labeled spatial-temporal correlation between cameras. This paper presents Video-zilla, a standalone indexing layer between video query systems and a video store to organize video data. We propose a video data unit abstraction, semantic video stream (SVS), based on a notion of distance between objects in the video. SVS implicitly captures scenes, which is missing from current video content characterization and a middle ground between individual frames and an entire camera feed. We then build a hierarchical index that exposes the semantic similarity both within and across camera feeds, such that Video-zilla can quickly cluster video feeds based on their content semantics without manual labeling. We implement and evaluate Video-zilla in three use cases: object identification queries, clustering for training specialized DNNs, and archival services. In all three cases, Video-zilla reduces the time complexity of inter-camera video analytics from linear with the number of cameras to sublinear, and reduces query resource usage by up to 14x compared to using frame-level or spatial-temporal similarity built into existing query systems.more » « less
An official website of the United States government

