skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Environmental Pressures on Top-Down and Bottom-Up Forces in Coastal Ecosystems
Global change is manifesting new and potent pressures that may determine the relative influence of top-down and bottom-up forces on the productivity of plants that undergird coastal ecosystems. Here, I present a meta-analysis conducted to assess how herbivory, nitrogen enrichment, and elevated salinity influence plant productivity according to the salinity regimes of coastal ecosystems. An examination of 99 studies representing 288 effect sizes across 76 different plant species revealed that elevated salinity negatively affected productivity across all environments, but particularly in freshwater ecosystems. Nitrogen enrichment, on the other hand, positively affected productivity. In agreement with the plant stress hypothesis, herbivory had the greatest negative impact in saline habitats. This trend, however, appears to reverse with nitrogen enrichment, with maximum losses to herbivory occurring in brackish habitats. These findings demonstrate that multiple stressors can yield complex, and sometimes opposite outcomes to those arising from individual stressors. This study also suggests that trophic interactions will likely shift as coastal ecosystems continue to experience nutrient enrichment and sea level rise.  more » « less
Award ID(s):
1655702
PAR ID:
10378557
Author(s) / Creator(s):
Date Published:
Journal Name:
Diversity
Volume:
13
Issue:
9
ISSN:
1424-2818
Page Range / eLocation ID:
444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To predict future changes in high latitude biomes, it is important to understand how plant communities will respond to increased temperature. Across sub-arctic systems, warming generally increases aboveground biomass in plant communities. Specifically, in arctic graminoid systems, experimental warming has been shown to increase productivity, aboveground biomass and leaf litter production, and stimulate early-season growth. Warming can also decrease species richness, and reduce foliar nitrogen (N) in aboveground biomass over the growing season. Migrating geese are important grazers in arctic and subarctic ecosystems during summer breeding months. Avian herbivores depend on high quality forage (high N) and are often found at high enough densities to impact vegetation communities. Exclosure experiments show that goose herbivory reduces biomass of herbaceous species but increases net above-ground primary production and N concentrations of grazing-tolerant sedges, and sometimes even increases species richness. Goose herbivory also alters plant physiological processes as evidenced by increased N uptake by plants, as well as the biophysical processes that affect N cycling through trampling and fecal deposition. Thus, high-density populations of avian herbivores can have top-down control on their vegetation communities. While increasing global temperatures may increase aboveground biomass and decrease species richness in plant communities, herbivory could potentially mediate, or even reverse, these responses. For example, Post and Pedersen (2008) suggest that herbivory may exacerbate plant response to warming because both effects increase rates of productivity, while simultaneously reducing the effects of warming on aboveground biomass. If the interaction between warming and herbivory causes a shift in plant abundance and community functional groups, this could cascade through the system resulting in changes in nutrient cycling and plant-animal feedbacks. The Yukon-Kuskokwim (Y-K) Delta is one of the largest river deltas in the world and is a globally important breeding area for millions of long-distance migratory waterfowl and shorebird species. The majority of these species nest in high densities close to the ocean among lowland coastal habitat. Geese populations utilize overlapping habitats and shift from more coastal to more interior habitats over the growing season. The expectations for how vegetation responds to increasing temperature and changes in herbivory with climate change will vary for different plant communities. We propose to conduct an experiment that investigates the impact of warming and herbivory on three coastal sub-arctic vegetation communities in the Y-K Delta addressing the following questions: 1) How does warming impact vegetation biomass and community composition; 2) How does herbivory impact species composition and plant functional groups; and 3) How do the different responses to warming and herbivory interact? 
    more » « less
  2. Organismal phenotypes often co-vary with environmental variables across broad geographic ranges. Less is known about the extent to which phenotypes match local conditions when multiple biotic and abiotic stressors vary at fine spatial scales. Bittercress (Brassicaceae: Cardamine cordifolia), a perennial forb, grows across a microgeographic mosaic of two contrasting herbivory regimes: high herbivory in meadows (sun habitats) and low herbivory in deeply shaded forest understories (shade habitats). We tested for local phenotypic differentiation in plant size, leaf morphology, and anti-herbivore defense (realized resistance and defensive chemicals, i.e., glucosinolates) across this habitat mosaic through reciprocal transplant–common garden experiments with clonally propagated rhizomes. We found habitat-specific divergence in morphological and defensive phenotypes that manifested as contrasting responses to growth in shade common gardens: weak petiole elongation and attenuated defenses in populations from shade habitats, and strong petiole elongation and elevated defenses in populations from sun habitats. These divergent phenotypes are generally consistent with reciprocal local adaptation: plants from shade habitats that naturally experience low herbivory show reduced investment in defense and an attenuated shade avoidance response, owing to its ineffectiveness within forest understories. By contrast, plants from sun habitats with high herbivory show shade-induced elongation, but no evidence of attenuated defenses canonically associated with elongation in shade-intolerant plant species. Finally, we observed differences in flowering phenology between habitat types that could potentially contribute to inter-habitat divergence by reducing gene flow. This study illuminates how clonally heritable plant phenotypes track a fine-grained mosaic of herbivore pressure and light availability in a native plant. 
    more » « less
  3. Abstract Earlier snowmelt, warmer temperatures and herbivory are among the factors that influence high-latitude tundra productivity near the town of Utqiaġvik in northern Alaska. However, our understanding of the potential interactions between these factors is limited. MODIS observations provide cover fractions of vegetation, snow, standing water, and soil, and fractional absorption of photosynthetically active radiation by canopy chlorophyll (fAPARchl) per pixel. Here, we evaluated a recent time-period (2001–2014) that the tundra experienced large interannual variability in vegetation productivity metrics (i.e. fAPARchland APARchl), which was explainable by both abiotic and biotic factors. We found earlier snowmelt to increase soil and vegetation cover, and productivity in June, while warmer temperatures significantly increased monthly productivity. However, abiotic factors failed to explain stark decreases in productivity during August of 2008, which coincided with a severe lemming outbreak. MODIS observations found this tundra ecosystem to completely recover two years later, resulting in elevated productivity. This study highlights the potential roles of both climate and herbivory in modulating the interannual variability of remotely retrieved plant productivity metrics in Arctic coastal tundra ecosystems. 
    more » « less
  4. Abstract The rapid human‐driven changes in the environment during the Anthropocene have placed extreme stress on many plants and animals. Beneficial interactions with microorganisms may be crucial for ameliorating these stressors and facilitating the ecosystem services host organisms provide. Foliar endophytes, microorganisms that reside within leaves, are found in essentially all plants and can provide important benefits (e.g., enhanced drought tolerance or resistance to herbivory). However, it remains unclear how important the legacy effects of the abiotic stressors that select on these microbiomes are for affecting the degree of stress amelioration provided to their hosts. To elucidate foliar endophytes' role in host‐plant salt tolerance, especially if salinity experienced in the field selects for endophytes that are better suited to improve the salt tolerance of their hosts, we combined field collections of 90 endophyte communities from 30 sites across the coastal Everglades with a manipulative growth experiment assessing endophyte inoculation effects on host‐plant performance. Specifically, we grew >350 red mangrove (Rhizophora mangle) seedlings in a factorial design that manipulated the salinity environment the seedlings experienced (freshwater vs. saltwater), the introduction of field‐collected endophytes (live vs. sterilized inoculum), and the legacy of salinity stress experienced by these introduced endophytes, ranging from no salt stress (0 parts per thousand [ppt] salinity) to high salt stress (40 ppt) environments. We found that inoculation with field‐collected endophytes significantly increased mangrove performance across almost all metrics examined (15%–20% increase on average), and these beneficial effects typically occurred when the endophytes were grown in saltwater. Importantly, our study revealed the novel result that endophyte‐conferred salinity tolerance depended on microbiome salinity legacy in a key coastal foundation species. Salt‐stressed mangroves inoculated with endophyte microbiomes from high‐salinity environments performed, on average, as well as plants grown in low‐stress freshwater, while endophytes from freshwater environments did not relieve host salinity stress. Given the increasing salinity stress imposed by sea level rise and the importance of foundation species like mangroves for ecosystem services, our results indicate that consideration of endophytic associations and their salinity legacy may be critical for the successful restoration and management of coastal habitats. 
    more » « less
  5. Kim, Daehyun (Ed.)
    Nutrient enrichment alters plant community structure and function at a global scale. Coastal plant systems are expected to experience increased rates of nitrogen and phosphorus deposition by 2100, caused mostly by anthropogenic activity. Despite high density of studies investigating connections between plant community structure and ecosystem function in response to nutrient addition, inconsistencies in system response based on the ecosystem in question calls for more detailed analyses of nutrient impacts on community organization and resulting productivity response. Here, we focus on nutrient addition impacts on community structure and organization as well as productivity of different lifeforms in a coastal grassland. We established long-term nutrient enrichment plots in 2015 consisting of control (C), nitrogen (N), phosphorus (P), and nitrogen + phosphorus (NP) treatments. In 2017 we collected graminoid and forb productivity, root productivity, and community composition for each plot. We found no N x P interaction, but N enrichment was a significant main effect on productivity, highlighting N limitation in coastal systems. Importantly, nutrient enrichment treatments did not alter root productivity. However, all treatments caused significant differences in community composition. Using rank abundance curves, we determined that community composition differences were driven by increased dominance of nitrophilous graminoids, re-organization of subordinate species, and species absences in N and NP plots. Results of this study highlight how coastal grassland communities are impacted by nutrient enrichment. We show that community re-organization, increased dominance, and absence of critical species are all important mechanisms that reflect community-level impacts of nutrient enrichment in our coastal grassland site. 
    more » « less