skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Salinity legacy: Foliar microbiome's history affects mutualist‐conferred salinity tolerance
Abstract The rapid human‐driven changes in the environment during the Anthropocene have placed extreme stress on many plants and animals. Beneficial interactions with microorganisms may be crucial for ameliorating these stressors and facilitating the ecosystem services host organisms provide. Foliar endophytes, microorganisms that reside within leaves, are found in essentially all plants and can provide important benefits (e.g., enhanced drought tolerance or resistance to herbivory). However, it remains unclear how important the legacy effects of the abiotic stressors that select on these microbiomes are for affecting the degree of stress amelioration provided to their hosts. To elucidate foliar endophytes' role in host‐plant salt tolerance, especially if salinity experienced in the field selects for endophytes that are better suited to improve the salt tolerance of their hosts, we combined field collections of 90 endophyte communities from 30 sites across the coastal Everglades with a manipulative growth experiment assessing endophyte inoculation effects on host‐plant performance. Specifically, we grew >350 red mangrove (Rhizophora mangle) seedlings in a factorial design that manipulated the salinity environment the seedlings experienced (freshwater vs. saltwater), the introduction of field‐collected endophytes (live vs. sterilized inoculum), and the legacy of salinity stress experienced by these introduced endophytes, ranging from no salt stress (0 parts per thousand [ppt] salinity) to high salt stress (40 ppt) environments. We found that inoculation with field‐collected endophytes significantly increased mangrove performance across almost all metrics examined (15%–20% increase on average), and these beneficial effects typically occurred when the endophytes were grown in saltwater. Importantly, our study revealed the novel result that endophyte‐conferred salinity tolerance depended on microbiome salinity legacy in a key coastal foundation species. Salt‐stressed mangroves inoculated with endophyte microbiomes from high‐salinity environments performed, on average, as well as plants grown in low‐stress freshwater, while endophytes from freshwater environments did not relieve host salinity stress. Given the increasing salinity stress imposed by sea level rise and the importance of foundation species like mangroves for ecosystem services, our results indicate that consideration of endophytic associations and their salinity legacy may be critical for the successful restoration and management of coastal habitats.  more » « less
Award ID(s):
2030060 1922521
PAR ID:
10445036
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
103
Issue:
6
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sand‐clay mixtures are common in both freshwater and saltwater environments, yet how they behave under different levels of salinity remains poorly understood. Here, we demonstrate the impact of salinity on the rheological properties and erosion threshold of sand‐clay mixtures through systematically controlled flume experiments and rheological measurements. Mixtures with a representative bentonite‐to‐sand ratio typical of natural estuarine and coastal sediments were prepared at salinities ranging from 0 to 35 parts per thousand (ppt), spanning freshwater to seawater conditions. We measured viscosity, flow‐point stress, and yield stress of the mixtures using a rheometer and determined the critical bed shear stress in a water‐recirculating flume. Our results indicate that as salinity increases from 0 to 35 ppt, the critical bed shear stress decreases by about two orders of magnitude, from about 60 Pa at 0 ppt to less than 1 Pa at 35 ppt. Similarly, both the flow‐point stress and yield stress decreased by over two orders of magnitude with increasing salinity. These changes correspond to a salinity‐induced transition of the sand‐bentonite mixture from a cohesive, strong‐gel state in freshwater (0 ppt), to a weak‐gel state between 3 and 10 ppt, and finally to a fluid‐like state above 10 ppt. Our research highlights the important role of salt in controlling the rheological properties and erosion threshold of fresh, non‐consolidated deposits of sand‐clay mixtures, with implications for predicting coastal landscape evolution and designing erosion‐control strategies. 
    more » « less
  2. Mangroves have evolved at least 27 times across ~20 plant families to survive coastal. To environments characterized by high salinity, inundation, intense light, and strong winds survive these extreme conditions, mangroves exhibit a variety of physiological strategies to tolerate the low osmotic potentials associated with saltwater inundation. Because low osmotic potentials are counterbalanced by high turgor pressure, saltwater exposure exerts mechanical demands on cells. Analyzing 34 mangrove species and 33 closely related inland taxa from 17 plant families, we show that compared to their inland relatives, mangroves have unusually small leaf epidermal pavement cells and thicker cell walls, which together confer greater mechanical strength and tolerance to low osmotic potentials. However, mangroves do not exhibit smaller, more numerous stomata that enable higher photosynthetic rates , suggesting selection on biomechanical integrity rather than on gas exchange capacity. Notably, mangroves break the allometric scaling between the sizes of epidermal pavement cells and stomata typically seen in land plants, highlighting that strong selection in saline habitats can override genome size–mediated scaling rules. Phylogenetic comparative analyses revealed repeated convergent evolution of cell traits across independent transitions from inland to coastal habitats. These anatomical changes constitute a simple but effective adaptation to salt stress. Our findings underscore the role of biomechanics in driving convergent evolution of cell traits and suggest that manipulating cell size and wall properties could be a promising strategy to engineering salt-tolerant plants. 
    more » « less
  3. Abstract Microorganisms associated with plants can affect nutrient and water acquisition, plant defenses, and ecological interactions, with effects on plant growth that range from beneficial to antagonistic. In Glycine max (soybean), many studies have examined the soil microbiome and the legume–rhizobium relationship, but little is known about foliar endophytes, their effects on plant biomass and fitness, and how plants respond to their presence. To address these questions, we inoculated Glycine max with field-collected isolates of previously isolated, dominant strains of Methylobacterium and Colletotrichum in either sterile or non-sterile soil. We then used RNAseq to compare the transcriptomic responses of plants to single- and co-inoculation of endophytes. We found that all endophyte treatments increased soybean growth compared to control, but only in sterile soil. These results suggest context-dependency, with endophytes serving as facultative mutualists under stress or nutrient deprivation. Similarly, transcriptomic analyses revealed that soybean defense and stress responses depended on the interaction of endophytes; Methylobacterium elicited the strongest response but was modulated by the presence of Colletotrichum. Our findings highlight the environmentally dependent effects of co-existing endophytes within soybean leaves. 
    more » « less
  4. Coastal wetlands, such as the Everglades, are increasingly being exposed to stressors that have the potential to modify their existing ecological processes because of global climate change. Their soil microbiomes include a population of organisms important for biogeochemical cycling, but continual stresses can disturb the community’s composition, causing functional changes. The Everglades feature wetlands with varied salinity levels, implying that they contain microbial communities with a variety of salt tolerances and microbial functions. Therefore, tracking the effects of stresses on these populations in freshwater and brackish marshes is critical. The study addressed this by utilizing next generation sequencing (NGS) to construct a baseline soil microbial community. The carbon and sulfur cycles were studied by sequencing a microbial functional gene involved in each process, the mcrA and dsrA functional genes, respectively. Saline was introduced over two years to observe the taxonomic alterations that occurred after a long-term disturbance such as seawater intrusion. It was observed that saltwater dosing increased sulfite reduction in freshwater peat soils and decreased methylotrophy in brackish peat soils. These findings add to the understanding of microbiomes by demonstrating how changes in soil qualities impact communities both before and after a disturbance such as saltwater intrusion. 
    more » « less
  5. Change in the coastal zone is accelerating with external forcing by sea-level rise, nutrient loading, drought, and over-harvest, leading to significant stress on the foundation plant species of coastal salt marshes. The rapid evolution of marsh state induced by these drivers makes the ability to detect stressors prior to marsh loss important. However, field work in coastal salt marshes can be challenging due to limited access and their fragile nature. Thus, remote sensing approaches hold promise for rapid and accurate determination of marsh state across multiple spatial scales. In this study, we evaluated the use of remote sensing tools to detect three dominant stressors on Spartina alterniflora. We took advantage of a barrier island salt marsh chronosequence in Virginia, USA, where marshes of different ages and level of stressor exist side by side. We collected hyperspectral imagery of plants along with salinity, sediment redox potential, and foliar nitrogen content in the field. We also conducted a greenhouse study where we manipulated environmental conditions. We found that models developed for stressors based on plant spectral response correlated well with salinity and foliar nitrogen within the greenhouse and field data, but were not transferable from lab to field, likely due to the limited range of conditions explored within the greenhouse experiments and the coincidence of multiple stressors in the field. This study is an important step towards the development of a remote sensing tool for tracking of ecosystem development, marsh health, and future ecosystem services. 
    more » « less