Abstract Individuals who interact with each other in social networks often exchange ideas and influence each other’s opinions. A popular approach to study the spread of opinions on networks is by examining bounded-confidence models (BCMs), in which the nodes of a network have continuous-valued states that encode their opinions and are receptive to other nodes’ opinions when they lie within some confidence bound of their own opinion. In this article, we extend the Deffuant–Weisbuch (DW) model, which is a well-known BCM, by examining the spread of opinions that coevolve with network structure. We propose an adaptive variant of the DW model in which the nodes of a network can (1) alter their opinions when they interact with neighbouring nodes and (2) break connections with neighbours based on an opinion tolerance threshold and then form new connections following the principle of homophily. This opinion tolerance threshold determines whether or not the opinions of adjacent nodes are sufficiently different to be viewed as ‘discordant’. Using numerical simulations, we find that our adaptive DW model requires a larger confidence bound than a baseline DW model for the nodes of a network to achieve a consensus opinion. In one region of parameter space, we observe ‘pseudo-consensus’ steady states, in which there exist multiple subclusters of an opinion cluster with opinions that differ from each other by a small amount. In our simulations, we also examine the roles of early-time dynamics and nodes with initially moderate opinions for achieving consensus. Additionally, we explore the effects of coevolution on the convergence time of our BCM.
more »
« less
Opinion disparity in hypergraphs with community structure
The division of a social group into subgroups with opposing opinions, which we refer to as opinion disparity, is a prevalent phenomenon in society. This phenomenon has been modeled by including mechanisms such as opinion homophily, bounded confidence interactions, and social reinforcement mechanisms. In this paper, we study a complementary mechanism for the formation of opinion disparity based on higher-order interactions, i.e., simultaneous interactions between multiple agents. We present an extension of the planted partition model for uniform hypergraphs as a simple model of community structure, and we consider the hypergraph Susceptible-Infected-Susceptible (SIS) model on a hypergraph with two communities where the binary ideology can spread via links (pairwise interactions) and triangles (three-way interactions). We approximate this contagion process with a mean-field model and find that for strong enough community structure, the two communities can hold very different average opinions. We determine the regimes of structural and infectious parameters for which this opinion disparity can exist, and we find that the existence of these disparities is much more sensitive to the triangle community structure than to the link community structure. We show that the existence and type of opinion disparities are extremely sensitive to differences in the sizes of the two communities.
more »
« less
- Award ID(s):
- 2205967
- PAR ID:
- 10540004
- Publisher / Repository:
- Physical Review E
- Date Published:
- Journal Name:
- Physical Review E
- Volume:
- 108
- Issue:
- 3
- ISSN:
- 2470-0045
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We provide a compressive-measurement based method to detect susceptible agents who may receive misinformation through their contact with ‘stubborn agents’ whose goal is to influence the opinions of agents in the network. We consider a DeGroot-type opinion dynamics model where regular agents revise their opinions by linearly combining their neighbors’ opinions, but stubborn agents, while influencing others, do not change their opinions. Our proposed method hinges on estimating the temporal difference vector of network-wide opinions, computed at time instances when the stubborn agents interact. We show that this temporal difference vector has approximately the same support as the locations of the susceptible agents. Moreover, both the interaction instances and the temporal difference vector can be estimated from a small number of aggregated opinions. The performance of our method is studied both analytically and empirically. We show that the detection error decreases when the social network is better connected, or when the stubborn agents are ‘less talkative’.more » « less
-
We propose a mathematical model to study coupled epidemic and opinion dynamics in a network of communities. Our model captures SIS epidemic dynamics whose evolution is dependent on the opinions of the communities toward the epidemic, and vice versa. In particular, we allow both cooperative and antagonistic interactions, representing similar and opposing perspectives on the severity of the epidemic, respectively. We propose an Opinion-Dependent Reproduction Number to characterize the mutual influence between epidemic spreading and opinion dissemination over the networks. Through stability analysis of the equilibria, we explore the impact of opinions on both epidemic outbreak and eradication, characterized by bounds on the Opinion-Dependent Reproduction Number. We also show how to eradicate epidemics by reshaping the opinions, offering researchers an approach for designing control strategies to reach target audiences to ensure effective epidemic suppression.more » « less
-
During the COVID-19 pandemic, conflicting opinions on physical distancing swept across social media, affecting both human behavior and the spread of COVID-19. Inspired by such phenomena, we construct a two-layer multiplex network for the coupled spread of a disease and conflicting opinions. We model each process as a contagion. On one layer, we consider the concurrent evolution of two opinions — pro-physical-distancing and anti-physical-distancing — that compete with each other and have mutual immunity to each other. The disease evolves on the other layer, and individuals are less likely (respectively, more likely) to become infected when they adopt the pro-physical-distancing (respectively, anti-physical-distancing) opinion. We develop approximations of mean-field type by generalizing monolayer pair approximations to multilayer networks; these approximations agree well with Monte Carlo simulations for a broad range of parameters and several network structures. Through numerical simulations, we illustrate the influence of opinion dynamics on the spread of the disease from complex interactions both between the two conflicting opinions and between the opinions and the disease. We find that lengthening the duration that individuals hold an opinion may help suppress disease transmission, and we demonstrate that increasing the cross-layer correlations or intra-layer correlations of node degrees may lead to fewer individuals becoming infected with the disease.more » « less
-
People sometimes change their opinions when they discuss things with each other. Researchers can use mathematics to study opinion changes in simplifications of real-life situations. These simplified scenarios, which are examples of mathematical models, help researchers explore how people influence each other through their social interactions. In today’s digital world, these models can help us learn how to promote the spread of accurate information and reduce the spread of inaccurate information. In this article, we discuss a simple mathematical model of opinion changes that arise from social interactions. We briefly describe what opinion models can tell us and how researchers try to make them more realistic.more » « less
An official website of the United States government

