skip to main content


Title: SWprocess: a workflow for developing robust estimates of surface wave dispersion uncertainty
Abstract Non-invasive surface wave methods are increasingly being used as the primary technique for estimating a site’s small-strain shear wave velocity (Vs). Yet, in comparison to invasive methods, non-invasive surface wave methods suffer from highly variable standards of practice, with each company/group/analyst estimating surface wave dispersion data, quantifying its uncertainty (or ignoring it in many cases), and performing inversions to obtain Vs profiles in their own unique manner. In response, this work presents a well-documented, production-tested, and easy-to-adopt workflow for developing estimates of experimental surface wave dispersion data with robust measures of uncertainty. This is a key step required for propagating dispersion uncertainty forward into the estimates of Vs derived from inversion. The paper focuses on the two most common applications of surface wave testing: the first, where only active-source testing has been performed, and the second, where both active-source and passive-wavefield testing has been performed. In both cases, clear guidance is provided on the steps to transform experimentally acquired waveforms into estimates of the site’s surface wave dispersion data and quantify its uncertainty. In particular, changes to surface wave data acquisition and processing are shown to affect the resulting experimental dispersion data, thereby highlighting their importance when quantifying uncertainty. In addition, this work is accompanied by an open-source Python package, swprocess , and associated Jupyter workflows to enable the reader to easily adopt the recommendations presented herein. It is hoped that these recommendations will lead to further discussions about developing standards of practice for surface wave data acquisition, processing, and inversion.  more » « less
Award ID(s):
2120155
NSF-PAR ID:
10378913
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Seismology
Volume:
26
Issue:
4
ISSN:
1383-4649
Page Range / eLocation ID:
731 to 756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    This paper deals with in situ characterization of the small-strain shear-wave velocity VS and damping ratio DS from an advanced interpretation of Multi-channel Analysis of Surface Waves (MASW) surveys. A new approach based on extracting Rayleigh wave data using the CFDBFa method has been discussed in the companion paper. This paper focuses on mapping the experimental Rayleigh wave phase velocity and attenuation into profiles of VS and DS versus depth, which is achieved through a joint inversion procedure. The joint inversion of phase velocity and attenuation data utilizes a newly developed Monte Carlo global search algorithm, which implements a smart sampling procedure. This scheme exploits the scaling properties of the solution of the Rayleigh eigenvalue problem to modify the trial earth models and improve the matching with the experimental data. Thus, a reliable result can be achieved with a limited number of trial ground models. The proposed algorithm is applied to the inversion of synthetic data and of experimental data collected at the Garner Valley Downhole Array site, as described in the companion paper. In general, inverted soil models exhibit well-defined VS profiles, whereas DS profiles are affected by larger uncertainties. Greater uncertainty in the inverted DS profiles is a direct result of higher variability in the experimental attenuation data, the limited wavelength range at which reliable values of attenuation parameters can be retrieved, and the sensitivity of attenuation data to both DS and VS. Nonetheless, the resulting inverted earth models agree well with alternative in situ estimates and geological data. The results stress the feasibility of retrieving both stiffness and attenuation parameters from active-source MASW testing and the effectiveness of extracting in situ damping ratio estimates from surface wave data.

     
    more » « less
  2. Abstract

    I present a 3‐D isotropic shear wave velocity model of the crust and uppermost mantle beneath the Alaska‐Aleutian subduction zone offshore of the Alaska Peninsula, based on seismic data recorded by the Alaska Amphibious Community Seismic Experiment (AACSE) array and some other networks. The model derives from Rayleigh wave phase speed measurements extracted from ambient seismic noise. A new three‐station interferometry (Zhang et al., 2020) approach is applied to improve the data coverage of ambient noise surface waves. Based on the ambient noise Rayleigh wave dispersion data, a Bayesian Monte Carlo inversion is performed to produce the shear wave velocity model. There are several prominent structures captured by the model, including: (1) The major sedimentary basins across the study region are identified by model. (2) Crustal thickness estimates are related with the geological structures. (3) The imaged slab edge is consistent with both the Slab 2.0 model (Hayes et al., 2018) and earthquake locations. And lots of geological and tectonic features related to subduction zone are captured, including the serpentinized forearc and partial melting zone beneath the Aleutian arc volcanoes. (4) Near the Shumagin gap, reduction in Vs is observed at the uppermost part of the incoming Pacific plate, consistent with the active source study of Shillington et al. (2015). The Vs reduction reflects hydration of the oceanic plate which could be related to local seismicity variation.

     
    more » « less
  3. null (Ed.)
    Heat loss quantification (HLQ) is an essential step in improving a building’s thermal performance and optimizing its energy usage. While this problem is well-studied in the literature, most of the existing studies are either qualitative or minimally driven quantitative studies that rely on localized building envelope points and are, thus, not suitable for automated solutions in energy audit applications. This research work is an attempt to fill this gap of knowledge by utilizing intensive thermal data (on the order of 100,000 plus images) and constitutes a relatively new area of analysis in energy audit applications. Specifically, we demonstrate a novel process using deep-learning methods to segment more than 100,000 thermal images collected from an unmanned aerial system (UAS). To quantify the heat loss for a building envelope, multiple stages of computations need to be performed: object detection (using Mask-RCNN/Faster R-CNN), estimating the surface temperature (using two clustering methods), and finally calculating the overall heat transfer coefficient (e.g., the U-value). The proposed model was applied to eleven academic campuses across the state of North Dakota. The preliminary findings indicate that Mask R-CNN outperformed other instance segmentation models with an mIOU of 73% for facades, 55% for windows, 67% for roofs, 24% for doors, and 11% for HVACs. Two clustering methods, namely K-means and threshold-based clustering (TBC), were deployed to estimate surface temperatures with TBC providing consistent estimates across all times of the day over K-means. Our analysis demonstrated that thermal efficiency not only depended on the accurate acquisition of thermal images but also relied on other factors, such as the building geometry and seasonal weather parameters, such as the outside/inside building temperatures, wind, time of day, and indoor heating/cooling conditions. Finally, the resultant U-values of various building envelopes were compared with recommendations from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) building standards. 
    more » « less
  4. SUMMARY

    A robust, in situ estimate of shear-wave velocity VS and the small-strain damping ratio DS (or equivalently, the quality factor QS) is crucial for the design of buildings and geotechnical systems subjected to vibrations or earthquake ground shaking. A promising technique for simultaneously obtaining both VS and DS relies on the Multichannel Analysis of Surface Waves (MASW) method. MASW can be used to extract the Rayleigh wave phase velocity and phase attenuation data from active-source seismic traces recorded along linear arrays. Then, these data can be inverted to obtain VS and DS profiles. This paper introduces two novel methodologies for extracting the phase velocity and attenuation data. These new approaches are based on an extension of the beamforming technique which can be combined with a modal filter to isolate different Rayleigh propagation modes. Thus, the techniques return reliable phase velocity and attenuation estimates even in the presence of a multimode wavefield, which is typical of complex stratigraphic conditions. The reliability and effectiveness of the proposed approaches are assessed on a suite of synthetic wavefields and on experimental data collected at the Garner Valley Downhole Array and Mirandola sites. The results reveal that, under proper modelling of wavefield conditions, accurate estimates of Rayleigh wave phase velocity and attenuation can be extracted from active-source MASW wavefields over a broad frequency range. Eventually, the estimation of soil mechanical parameters also requires a robust inversion procedure to map the experimental Rayleigh wave parameters into soil models describing VS and DS with depth. The simultaneous inversion of phase velocity and attenuation data is discussed in detail in the companion paper.

     
    more » « less
  5. SUMMARY

    Global variations in the propagation of fundamental-mode and overtone surface waves provide unique constraints on the low-frequency source properties and structure of the Earth’s upper mantle, transition zone and mid mantle. We construct a reference data set of multimode dispersion measurements by reconciling large and diverse catalogues of Love-wave (49.65 million) and Rayleigh-wave dispersion (177.66 million) from eight groups worldwide. The reference data set summarizes measurements of dispersion of fundamental-mode surface waves and up to six overtone branches from 44 871 earthquakes recorded on 12 222 globally distributed seismographic stations. Dispersion curves are specified at a set of reference periods between 25 and 250 s to determine propagation-phase anomalies with respect to a reference Earth model. Our procedures for reconciling data sets include: (1) controlling quality and salvaging missing metadata; (2) identifying discrepant measurements and reasons for discrepancies; (3) equalizing geographic coverage by constructing summary rays for travel-time observations and (4) constructing phase velocity maps at various wavelengths with combination of data types to evaluate inter-dataset consistency. We retrieved missing station and earthquake metadata in several legacy compilations and codified scalable formats to facilitate reproducibility, easy storage and fast input/output on high-performance-computing systems. Outliers can be attributed to cycle skipping, station polarity issues or overtone interference at specific epicentral distances. By assessing inter-dataset consistency across similar paths, we empirically quantified uncertainties in traveltime measurements. More than 95 per cent measurements of fundamental-mode dispersion are internally consistent, but agreement deteriorates for overtones especially branches 5 and 6. Systematic discrepancies between raw phase anomalies from various techniques can be attributed to discrepant theoretical approximations, reference Earth models and processing schemes. Phase-velocity variations yielded by the inversion of the summary data set are highly correlated (R ≥ 0.8) with those from the quality-controlled contributing data sets. Long-wavelength variations in fundamental-mode dispersion (50–100 s) are largely independent of the measurement technique with high correlations extending up to degree ∼25. Agreement degrades with increasing branch number and period; highly correlated structure is found only up to degree ∼10 at longer periods (T > 150 s) and up to degree ∼8 for overtones. Only 2ζ azimuthal variations in phase velocity of fundamental-mode Rayleigh waves were required by the reference data set; maps of 2ζ azimuthal variations are highly consistent between catalogues ( R = 0.6–0.8). Reference data with uncertainties are useful for improving existing measurement techniques, validating models of interior structure, calculating teleseismic data corrections in local or multiscale investigations and developing a 3-D reference Earth model.

     
    more » « less