skip to main content


Title: Phase Behavior and Ionic Conductivity of Blended, Ion-Condensed Electrolytes with Ordered Morphologies
In this study, the amphiphilic salt lithium trifluoromethanesulfonylimide octadecane (C18LiTFSI) was used as a basis to investigate the effects of anion density and cation coordination sites within blended electrolytes with strong ionic aggregation. C18LiTFSI was previously reported as a single-component, ion-condensed electrolyte with a wide layered liquid crystalline phase regime. Three additive molecules with varyingly sized polar sulfonyl groups attached to an octodecane-tail were synthesized and mixed with C18LiTFSI. The thermal properties, morphology, and ionic conductivity of the blended electrolytes were characterized. It was found that the blended electrolytes exhibited layered liquid crystalline morphology over a narrower temperature range than the pure salt, and the ionic conductivity of the blended liquid crystalline electrolytes were generally lower than that of the pure salt. Surprising, the additives were found to have the greatest effect on the bulk ionic conductivity of the semicrystalline phase of the electrolytes. Addition of minor fractions of methylsulfonyloctadecane to C18LiTFSI resulted in increases in conductivity of over two orders of magnitude at room temperature, while addition of ethylsulfonyloctadecane or isopropylsulfonyloctadecane with the larger head group resulted in decreased ionic conductivity over the entire composition space and temperature range investigated.  more » « less
Award ID(s):
1654162
NSF-PAR ID:
10379504
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
12
Issue:
13
ISSN:
2076-3417
Page Range / eLocation ID:
6529
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The novel use of ionic liquid as a solvent for biodegradable and natural organic biomaterials has increasingly sparked interest in the biomedical field. As compared to more volatile traditional solvents that rapidly degrade the protein molecular weight, the capability of polysaccharides and proteins to dissolve seamlessly in ionic liquid and form fine and tunable biomaterials after regeneration is the key interest of this study. Here, a blended system consisting of Bombyx Mori silk fibroin protein and a cellulose derivative, cellulose acetate (CA), in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) was regenerated and underwent characterization to understand the structure and physical properties of the films. The change in the morphology of the biocomposites (by scanning electron microscope, SEM) and their secondary structure analysis (by Fourier-transform infrared spectroscopy, FTIR) showed that the samples underwent a wavering conformational change on a microscopic level, resulting in strong interactions and changes in their crystalline structures such as the CA crystalline and silk beta-pleated sheets once the different ratios were applied. Differential scanning calorimetry (DSC) results demonstrated that strong molecular interactions were generated between CA and silk chains, providing the blended films lower glass transitions than those of the pure silk or cellulose acetate. All films that were blended had higher thermal stability than the pure cellulose acetate sample but presented gradual changes amongst the changing of ratios, as demonstrated by thermogravimetric analysis (TGA). This study provides the basis for the comprehension of the protein-polysaccharide composites for various biomedical applications. 
    more » « less
  2. Abstract

    Single‐ion conducting polymer electrolytes are of interest for use with advanced battery electrodes such as lithium metal, but achieving sufficiently high conductivity has been challenging. In this work, a model system containing charged sites that are precisely spaced along the polymer backbone is explored. Precision sulfonated poly(4‐phenylcyclopentene) lithium salt (p5PhS‐Li) with a high degree of sulfonation (> 90%) is synthesized and blended with poly(ethylene oxide) (PEO) to investigate the thermodynamic and transport properties. Melting point depression is measured via differential scanning calorimetry, ionic conductivity,κ, is determined using electrochemical impedance spectroscopy, and the fraction of current carried by Li+is estimated based on steady‐state current measurements. In conjunction with a density measurement, melting point depression is used to find an effective Flory–Huggins interaction parameter,χeff=   − 0.21, suggesting miscibility of the blend.κspans a large range from 2 × 10−11to 2 × 10−7S cm−1over the composition and temperature range investigated. The fraction of charge carried by lithium ions also spans a significant range from 0.12 in majority PEO blend to 0.98 in majorityp5PhS‐Li blend. This study addresses several limitations of sulfonated polystyrene and opens up the possibility of precisely controlling the spacing of other anion types.

     
    more » « less
  3. Solid polymer electrolytes offer potential improvements to lithium ion batteries that include extending their operating temperature range and improving the safe use of the batteries by inhibiting lithium dendrite formation. Because solid polymer electrolytes replace traditional liquid electrolytes as the lithium ion transport medium and also act as the electrode separator, these materials must offer good ionic conductivity along with providing good interfacial contact with the electrode material. This work presents the synthesis and characterization of polymer blends comprised poly(ethylene oxide) and phosphonium ionenes. Ionenes are a class of polycation that includes positive charges within the polymer backbone. Because the positive charge is a part of the polymer chain, the spacing and distribution of these charges have a significant impact on the properties of ionenes. This research focuses on determining the role of charge spacing and distribution of charges along the backbone of phosphonium ionenes on their ability to transport lithium ions. To accomplish this, phosphonium ionenes are blended with low molecular weight poly(ethylene oxide) (e.g. less than 3,000 g/mol) at mass ratios of 20:1, 10:1, and 5:1. The resulting blended solid polymer electrolyte membranes are evaluated for their thermal, mechanical and electrochemical properties along with their charge/discharge performance in coin cell batteries. The dependence of phosphonium ionene structure as well as the composition of SPE blends will be presented. 
    more » « less
  4. Abstract

    Ionic liquid (IL)‐containing polymers garner attention for electrochemical applications. This article overviews recent experimental and theoretical studies of polymer electrolytes that would be likely to cultivate new theoretical and computational frameworks for IL‐containing polymers. The first two sections outline the uniqueness of ILs that differentiates them from inorganic salts in polymers and explore deviation from the concept of the metaphor “room‐temperature molten salt.” Such distinct properties include (1) large intrinsic dipole moment and electronic polarizability, (2) hydrogen bonding, (3) π‐interactions, (4) a broad distribution of charges over the entire ion, and (5) the anisotropy of the ions. Moreover, the complexity of these properties substantially increases when the ions are polymerized. Indeed, their exceptional features would overcome the hurdle due to a trade‐off between ionic conductivity and mechanical robustness in inorganic salt‐doped polymers. Given these facts, the rest of the article focuses on emerging trends in the study of the dielectric response, phase separation, ion conductivity, and mechanical robustness of the polymer electrolytes, highlighting outstanding observations in experiments that may inspire existing theory and simulation. Our discussion also includes improving computational complexity for IL‐containing polymers. To this end, recent machine learning studies that consider ILs and polymer liquids are presented.

     
    more » « less
  5. Electrochemical separation processes are undergoing a renaissance as the range of applications continues to expand because they offer opportunities for increased energy efficiency and sustainability in comparison to conventional separation technologies. Existing platforms such as electrodialysis and electrodeionization (EDI) are seeing significant improvement and are currently being deployed for treating a diverse set of liquid streams ( e.g. , water and wastewater treatment, organic acid separation, etc. ). In addition, the relatively low inherent electricity requirement for electrochemical separations could potentially be satisfied through integration with sustainable sources of renewable energy. In order to achieve a truly sustainable electrochemical separations process, it is paramount to improve the energy efficiency of electrochemical separations by minimizing all sources of resistances within these units. This work reports of a new class of symmetric and asymmetric Janus bipolar resin wafers (RWs) that augment the spacer channel ionic conductivity in EDI while having the additional functionality of splitting water into protons and hydroxide ions. The latter attribute is important in niche applications that require pH modulation such as silica and organic acid removal from liquid streams. The Janus bipolar RWs were devised from single ion-conducting RWs that were interfaced together to create an intimate polycation–polyanion junction. Interestingly, the conductivity of the single ion-conducting RWs at low salt concentrations was observed to be dependent on the ionic mobilities of the counterions that the RW was transferring. Using single ion-conducting RWs to construct Janus bipolar RWs enabled the incorporation of a water-splitting catalyst (aluminum hydroxide nanoparticles) into the porous ion-exchange resin bed. To the best of our knowledge, this is the first time a water dissociation catalyst has been implemented in the ion-exchange resin bed for EDI. The water dissociation catalyst in bipolar junctions pre-polarizes water making it easier to split into hydronium and hydroxide ion charge carriers under applied electric fields via the second Wien effect. The new molecularly layered Janus RWs demonstrate both satisfactory water-splitting and salt removal in bench scale EDI setups and these materials may improve, or even supplant, existing bipolar membrane electrodialysis units that currently necessitate large electrolyte feed concentrations. 
    more » « less